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Abstract

Many enterprises today manage their Internet traffic on their wide-area networks (WANs)

using centralized, software-defined traffic engineering (TE) schemes. These schemes, how-

ever, scale poorly with network size; as the network grows, the runtimes required to deter-

mine flows on the network scale super-linearly. In response, network operators often fall

back on simple heuristics to meet their SLAs. Unfortunately, these heuristics come at the

expense of optimality: they lead to inexact, approximate solutions that can lead to poor

utilization on the network. The status quo is thus a difficult trade-off: fast solutions that are

significantly sub-optimal, or optimal solutions that are too slow.

However, these WAN topologies can be partitioned, either geographically or by their

resources (i.e., their commodities and link capacities). We analyze real-world traffic from

the Microsoft Azure WAN and demonstrate that its traffic is often clustered; this insight

motivates us to leverage partitioning to design novel, more scalable algorithms for traf-

fic engineering. Finding a valid partitioning is non-trivial, because we must adhere to the

constraints of the original traffic engineering problem, such as demand constraints and ca-

pacity constraints. At the same time, the partitioning cannot be designed poorly; otherwise

it could yield substantial approximation errors in the resultant flow allocations. We show

that, by cleverly designing our partitioning strategies, we can develop algorithms that pro-

vide a better trade-off between runtime and optimality.

First, we propose NCFlow, which builds off of the geographic partitioning strategy.

Instead of solving a global flow problem on the entire WAN, NCFlow solves i) a simpler

problem on a contraction of the network, and ii) a set of sub-problems in parallel on disjoint

clusters within the network. Our results on the topology and demands from the Microsoft

Azure WAN, as well as on publicly available topologies, show that NCFlow nearly matches
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the solution quality of currently deployed solutions for the maximum total flow objective

(99.1% of optimality in the median case), but is 11× faster than the state of the art, with

maximum observed speedups of 1, 900×. Moreover, NCFlow outperforms other heuristics

and approximation methods and realizes a better trade-off between optimality and runtime.

Second, we propose POP, an alternative algorithm that leverages commodity-based

partitioning. This approach exploits the Law of Large Numbers and randomly splits the TE

problem into smaller, independent sub-problems: each sub-problem executes the original

flow problem on the same topology, but with a fraction of the WAN’s link capacities, as

well as a subset of the commodities. We demonstrate that, by reusing the original flow

problem, POP can generalize to many TE objectives, not just maximum total flow. We also

provide theoretical and empirical evidence to justify random partitioning as an effective

strategy. In our experiments across the same set of topologies and demands, we show that,

in the median case, POP realizes 99.9% of the optimal solution, but is 18× faster than the

state of the art, with maximum observed speedups of 98×.

In the third part of this dissertation, we compare and contrast NCFlow and POP and

discuss their relative strengths and weaknesses. We show that NCFlow excels when the

optimal approach requires a small subset of the commodities to take all the capacity, which

directly contrasts with POP. Finally, we conclude by discussing how POP can be applied

to problems beyond traffic engineering and extend to other large-scale computer systems

problems, such as cluster scheduling and load balancing.
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Chapter 1

Introduction

Since the early 1990s, the Internet has evolved from an avant-garde experiment into a

mature, ubiquitous technology that has transformed our lives in every imaginable way.

Today, approximately 150,000 GB of traffic is sent on the Internet every second around the

world [3], and one would be hard-pressed to name another technology or innovation that

has had a greater daily impact on human society.

What makes the Internet a truly global phenomenon is a concept called Wide-Area

Networks (WANs), which connect Internet-accessible devices across entire towns, cities,

states, and even countries. To route Internet traffic around the world, WANs have histori-

cally relied on dynamic, decentralized protocols, such as IS-IS [57, 92, 112] and BGP [10,

34, 51, 52], to coordinate and ensure that packets can be delivered safely and reliably from

any source to any destination. These protocols effectively connect WANs to one another,

thus making the Internet a true network of networks. They enable a user in, say, Singapore

to load a website hosted on servers in Buenos Aires, for example.

However, in the last decade, Wide-Area Networks themselves have become global net-

works on their own. With the rise of cloud computing and the demand for globally available

services, large-scale web companies—such as Google, Amazon, and Microsoft—have de-

ployed datacenters all over the world, and they have constructed trans-continental WANs

to ensure that these datacenters are always connected to one another.

1
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Figure 1.1: The Microsoft Azure WAN from January 2021 [6]. For simplicity, both the “edge”
WAN (which handles ISP-facing traffic) and the inter-datacenter WAN are both captured in a single
map; in practice, their traffic is managed separately.

Because of their importance, these datacenter WANs have grown faster than their ISP-

facing counterparts; to support their high usage, enterprises provision their links with high-

capacity optical fiber. Moreover, because these WANs must connect datacenters across

continents, enterprises must also lease intercontinental submarine cables to be used as links

in the WAN to realize their global connectivity aspirations [81]. Unsurprisingly, datacenter

WANs have become an expensive resource for cloud providers [5, 71, 72, 76]: Microsoft

values their Azure WAN at a billion dollars and estimates its annual maintenance cost to be

a hundred million dollars [84].

In this dissertation, we argue that routing traffic on these global datacenter WANs is

a non-trivial problem for network operators: the state-of-the-art methods available today

scale poorly with network size. To address this challenge, we introduce two new algorithms

that can more efficiently and effectively route traffic, thereby maximizing utilization on the

WAN and ensuring its costs are well worth the benefits.
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1.1 Traffic Engineering on WANs

Because of their enormous value, enterprises place significant importance on traffic en-

gineering (TE) [20]—the study of efficiently routing dynamic traffic demands—on their

WANs. Network operators leverage TE to achieve high utilization. However, the traditional

TE strategies, which typically prescribe decentralized routing (e.g., RSVP-TE [19,21,98]),

pose a challenge for large-scale WANs. In the decentralized model, no entity has a global

view of the entire set of demands on the WAN, and instead, individual sites in the network

greedily select paths for their traffic using algorithms such as Constrained Shortest Path

First (CSPF) [55, 56, 58, 138]. As a result, the network can get stuck in locally optimal

routing patterns that are globally sub-optimal [115].

Starting about a decade ago, large cloud providers began applying the principles of

software-defined networking [35,36] to TE, thus birthing a centralized approach for routing

traffic [71, 72, 76]. Specifically, they computed optimal routing schemes for the current set

of demands by solving global multi-commodity flow problems on the entire WAN [71, 72,

76]; once computed, the routes are encoded into the switch forwarding tables across the

network [5, 36] (e.g., using MPLS [98]). In the centralized model, flow problems are often

expressed as linear programs, with well-defined objective functions and constraints [24,29].

This gives network operators the ability to explicitly model which objectives they care

about (e.g., maximizing throughput, or minimizing maximum link utilization) and define

the optimal solution (and therefore measure any gaps in optimality). Most importantly,

these linear programs can be efficiently solved using off-the-shelf blackbox optimization

solvers, such as Gurobi [68], Mosek [7], CPLEX [45], and many others [50]. Thanks to

this paradigm shift, enterprises were now able to offer low latency and high bandwidth for

critical, customer-facing applications [54, 125, 143], as well as fast response times for bulk

data transfers [79, 89, 117].

The centralized strategy has yielded significant improvements in utilization and overall

network performance since its adoption. But, as topology sizes have continued to grow,

solving multi-commodity flow problems as linear programs on the entire network has be-

come impractical and intractable. Network operators at Google captured this point elo-

quently in [72]; they noted that the “algorithm run time increased super-linearly with the
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Figure 1.2: As WAN topologies grow, multi-commodity flow problems become increasingly in-
tractable. To illustrate this, we benchmark a path-based formulation of the Multi-Commodity Maxi-
mum Flow (MCMF) linear program in Gurobi [68] on several topologies from the Internet Topology
Zoo [82]. As the topology size increases, the solver runtime increases quadratically. (Note the log
scale on both axes.)

site count,” which led to “extended periods of traffic blackholing during data plane failures,

ultimately violating our availability targets,” as well as “scaling pressure on limited space

in switch forwarding tables.” Even when leveraging state-of-the-art optimization software,

solver runtimes have increased super-linearly with topology sizes. (See Figure 1.2 for em-

pirical evidence.)

What compounds the scalability challenge is the increasingly dynamic nature of TE

in the 21st century: simply put, WAN traffic patterns have become more volatile as traf-

fic demands have increased. For example, network operators at Facebook have observed

high variability on their edge networks as recently as March 2019 [41], with daily peak

traffic reaching 7× more than the trough. This dynamism is not simply a function of user

behavior, however; traffic patterns may also change because of link/switch failures in the

network, which can occur at a moment’s notice [27,84,96,147] and with surprisingly high

frequency [81].

In response, enterprises have introduced tighter SLAs (e.g., within minutes) to promptly

respond to traffic spikes. The ultimate upshot of these trends is this: traffic engineering has
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Figure 1.3: Trade-off space for traffic engineering solutions today. Linear programs produce high-
quality traffic routes, but cannot keep up with today’s SLAs. On the other hand, heuristic approaches
and approximate algorithms are runtime-efficient, but produce sub-optimal routing. A solution that
is both fast and optimal will lead to better utilization on the WAN.

now become a rapid-paced, high-stakes, multi-shot game, where traffic routes must be re-

computed more quickly, more frequently, and more optimally than ever before. And, as il-

lustrated in Figure 1.3, the trade-off between centralized linear programming and decentral-

ized greedy algorithms is an unenviable predicament for network operators to stomach—

they are caught between the proverbial rock and a hard place.

1.2 Partitioning the WAN

We must find a better trade-off, a solution that is both runtime-efficient and close to optimal

in its routed flows. We know empirically that, for large-scale WANs with hundreds of sites,

the centralized approach will not scale. On the other hand, we also know that a completely

decentralized approach—where every switch is making locally optimal decisions—will

lead to a collectively bad outcome as well. The question becomes: can we do something in

between, a more Goldilocks solution that hits the sweet spot between complete centraliza-

tion and full decentralization?
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To achieve this goal, we will leverage a key idea:

We can partition WAN topologies into multiple discrete components, and these components

can be treated as distinct sub-problems of the original TE problem.

In this dissertation, we propose partitioning the WAN to transform the global TE prob-

lem into a discrete set of independent, parallelizable sub-problems. Intuitively, if we can

find a clever partitioning strategy that can reliably instantiate these sub-problems, we can

then use a divide-and-conquer approach to compute flow allocations and route traffic on

the WAN. The added benefit from partitioning is that, if we can now decide the number of

partitions, then that provides us with a tunable knob, which we can use to trade off between

flow quality and runtime. Essentially, if the centralized and decentralized approaches rep-

resent two poles of the traffic engineering spectrum, partitioning allows us to navigate the

entire spectrum and find that sweet spot.

Thesis statement: By partitioning the WAN, we can use a divide-and-conquer strategy for

traffic engineering to navigate the trade-off between solver runtime and traffic quality.

Devising a partitioning strategy for TE, however, is non-trivial. For it to succeed, it must

create sub-problems that have some semblance of independence—otherwise, the problem

cannot be parallelized. At the same time, the partitioning strategy must also ensure that the

global problem’s constraints are never violated. This transformation could (and most likely

will) lead to some approximation errors for certain inputs; we will occasionally sacrifice

traffic in the WAN for better runtime performance. But, if designed correctly, we will

achieve a much better trade-off between optimality and efficiency.

1.3 Traffic Engineering via Partitioning: NCFlow and POP

We present two different partitioning strategies for TE: geographic partitioning and commodity-

based partitioning. In geographic partitioning, we compute clusters on the network, seg-

menting the topology into contiguous components. Figure 1.4a shows an example of such
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(a) Geographic partitioning. The C denotes the
bandwidth capacity for each link in the network.
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(b) Commodity-based partitioning. The link ca-
pacityC from the original topology is nowC/2.

Figure 1.4: Examples of geographic and commodity-based partitioning of a simple WAN that spans
the continental United States.

a clustering on a fictitious WAN in the continental U.S. Computing these clusters is a non-

trivial matter, and a “bad” clustering can significantly impact flow quality on the network.

We show that certain graph clustering algorithms that aim to preserve the densely connected

sub-graphs in the topology, such as modularity-based clustering [31, 42] and spectral clus-

tering [107, 137], are effective for traffic engineering.

To leverage geographic partitioning, we propose an algorithm called NCFlow.1 Instead

of solving the global multi-commodity flow problem on the entire WAN, NCFlow solves

i) a simpler routing problem on the contraction of the network (i.e., the clustered graph),

then ii) the set of routing sub-problems on disjoint clusters within the network. NCFlow

still uses linear programming to solve the flow problem and maximize the total flow ob-

jective, but it modifies the linear programs to take advantage of the clustering. Through

careful construction, NCFlow can solve the sub-problems in parallel, while still routing

inter-cluster traffic and reconciling flows between clusters.

In our second approach—commodity-based partitioning—we randomly partition the

TE problem into smaller, independent sub-problems: each sub-problem has the same topol-

ogy, but with a fraction of the link capacities of the original problem, as well as a subset of

the commodities.2 Figure 1.4b shows an example of commodity-based partitioning on the

same fictitious WAN from Figure 1.4a. We show, both theoretically and empirically, that

1short for Network Contractions for Flow problems
2A commodity is a source-destination pair in the WAN that has requested traffic demand; we will define

it more formally in Chapter 2.
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random partitioning is also effective for developing a divide-and-conquer solution to TE.

To take advantage of commodity-based partitioning, we propose POP,3 our second algo-

rithm for scalable traffic engineering. Because of the partition is generated randomly, POP

exploits the Law of Large Numbers, which yields benefits at larger scales. Our approach

also allows us to reuse the original linear program without modification, which therefore

provides more generality than the previous approach—it can be applied to more objectives

beyond maximum total flow.

It is important to note that, while both NCFlow and POP use partitioning to accelerate

TE, neither requires any physical modification to the underlying topology structure of the

WAN. Both geographic and commodity-based partitioning are purely logical abstractions

that we use to accelerate traffic engineering.

1.4 Summary of Results

We benchmarked both NCFlow and POP on a thorough test harness of inputs: eight pub-

licly available WAN topologies from the Internet Topology Zoo [82], several different traf-

fic models, and many demand scales to simulate both light and heavy traffic scenarios.

Additionally, we were fortunate enough to evaluate our algorithms on a month’s worth of

real-world traffic demands from the Microsoft Azure WAN topology. Our results show that

both NCFlow and POP achieve a better trade-off between optimality and runtime than the

current state of the art in traffic engineering. In the median case, NCFlow nearly matches

the solution quality of currently deployed solutions for the maximum total flow objective

(99.1% of optimality), but is 11× faster than the gold standard approach, with maximum

observed speedups of 1, 900×. Similarly in the median case, POP realizes 99.9% of the op-

timal solution, but is 18× faster than the gold standard approach, with maximum observed

speedups of 98×. In our real-world experiments, we observed similar behavior: NCFlow

achieved 98.5% of optimality with 7.9× speedups in the median case, while POP achieved

99.9% of optimality with 12.5× speedups in the median case.

Additionally, we benchmark NCFlow and POP on real-world traffic matrices from Mi-

crosoft. we find that NCFlow is 8.5× faster in the median case, while achieving 98.5%

3short for Partitioned Optimization Problems
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Figure 1.5: Performance of NCFlow and POP relative to a Path-Based MCMF implemented and
executed in Gurobi. The left-hand side shows total volume of allocated flow; the right-hand side
shows relative speedup. NCFlow is 11× faster than in the median case, while POP is 18× faster.

of optimality; POP is 12.5× faster in the median case, while achieving 99.9% of opti-

mality. Beyond these empirical results, we outline best-case and worst-case scenarios for

both NCFlow and POP and delve into the strengths and weaknesses of each technique to

characterize how we are able to achieve these speedups while still maximizing flow quality.

1.5 Previously Published Work

This dissertation features the following previously published work:

• Contracting Wide-area Network Topologies to Solve Flow Problems Quickly [12].

Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai Menache, Matei Zaharia, Pe-

ter Bailis. NSDI 2021.

• Solving Large-Scale Granular Resource Allocation Problems Efficiently with
POP [102].

Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid, Peter Kraft, Akshay Agrawal,

Srikanth Kandula, Stephen Boyd, Matei Zaharia. SOSP 2021.

1.6 Dissertation Plan

This dissertation is organized as follows: Chapter 2 introduces relevant background on

traffic engineering and partitioning to appropriately ground this dissertation. Chapter 3
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introduces the NCFlow algorithm; Chapter 4 introduces the POP algorithm. In Chapter 5,

we compare NCFlow to POP and discuss their relative strengths and weaknesses. Chapter 6

discusses POP’s applicability to broader problems in computer systems research beyond

traffic engineering, including cluster scheduling and query load balancing. Finally, we

conclude and discuss possible areas of future work in Chapter 7.



Chapter 2

Background on Traffic Engineering

In this chapter, we provide background and motivation on traffic engineering on Wide-Area

Networks. We describe our problem setup, discuss prior solutions, and introduce notation

and definitions that will be used throughout this dissertation, specifically in Chapters 3 and

4.

2.1 Historical Context

A WAN is broadly defined as any Internet network that covers a wide geographic area,

and its origins can be traced to the infancy of the Internet itself: the original ARPANET

first spanned the western United States before expanding across the continental U.S. Today,

most, if not all, Internet Service Providers (ISPs) are considered WANs.

Over the last two decades, global Internet companies have constructed their own private

datacenters around the world to better service their users. For these enterprises, classical

decentralized routing protocols, such as BGP [10,34,51,52], have proven to be ineffective,

since they are not capacity- nor performance-aware [125]. Furthermore, research has shown

that significant barriers must be overcome to improve these protocols for today’s traffic

demands [40, 124].

Instead, these companies have elected to maintain their own private WANs to connect

their datacenters. In fact, they often build multiple WANs: some that connect to ISPs to

11
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Max total flow
Maximum concurrent flow
Min-max link utilization…

Figure 2.1: Overview of the Traffic Engineering problem for Wide-Area Networks. A traffic esti-
mation service periodically generates a traffic matrix (TM); both the TM and the WAN topology
are passed as inputs to the centralized TE controller, which is responsible for computing optimal
routes for every entry in the matrix. TE controllers typically use linear programming with blackbox
solvers to compute these routes; this approach provides network operators the flexibility to apply
different objectives (e.g., maximum total flow, maximum concurrent flow, etc.), depending on their
priorities.

reach end users [41, 125, 128, 143],1 and others that are dedicated solely to carrying traffic

between datacenters [72, 76]. (Figure 1.1 shows a map that displays both types of WANs

operated by Microsoft for their Azure cloud service.) The reasons for this development are

two-fold: i) inter-datacenter WANs typically exhibit unique traffic characteristics compared

to user-facing traffic [71], and ii) traffic on these WANs makes up an increasingly large

fraction of global Internet traffic today [88].

2.2 Problem Setup

In our setting, we’re given as input a Wide-Area Network topology and a traffic matrix
(TM), which represents the traffic demands on the network at a given point in time. A

commodity is any source-destination pair in the TM (i.e., a row and a column), and a

demand is the amount of traffic a commodity requests (i.e., the entry in the matrix for a

1These are often referred to as “edge” WANs in the literature.
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A
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C

CSPF Optimal

A
B

C

Figure 2.2: Simple example of sub-optimal routing with Constrained Shortest Path First (CSPF).
Commodities A, B, and C all have unit demand and share the same destination, and each edge has
unit capacity. Compared to the optimal routing on the right-hand side, CSPF’s routing on the left
consumes 5× as many links.

row-column pair).

The traffic matrices are generated by a centralized traffic estimation service, which runs

periodically on a regular interval (e.g., every five minutes). Depending on the WAN’s traffic

volatility, this interval window can be adjusted by the network operator, so long as the TE

controller can keep up. The service passively collects sFlow [63, 116] samples exported

by each network device in the WAN, then aggregates these samples per source/destination

pair, applies smoothing over the time window, and produces a complete matrix for the TE

controller to consume [6].

The TE controller, which is also a centralized service, has a single responsibility: com-

pute optimal routes for every commodity’s demand in the traffic matrix.

2.3 Prior Solutions

The earliest strategies for traffic engineering relied on decentralized approaches, drawing

inspiration from the naturally decentralization that was characteristic of the early Internet.

In this setting, no entity has a global view of the traffic demands on the WAN; instead, each

individual switch decide on its own how to route traffic, by greedily selecting paths for

their traffic. The most common path selection algorithm is Constrained Shortest Path First

(CSPF [55, 56, 58, 138]), which essentially runs a shortest-path algorithm after pruning the

links that violate the minimum bandwidth capacity constraints for the traffic. Figure 2.2
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illustrates an example of how this heuristic can go awry and allocate traffic along paths

that are globally sub-optimal. Prior work has shown that CSPF does not scale well to

large-scale datacenter WANs, especially on the order of hundreds or thousands of sites

and links [115]. Other heuristics, such as Equal-Cost Multi-Path (ECMP) routing, behave

similarly [39, 73, 132].

One possible approach to cope with such massive scale is to construct the WAN topol-

ogy as a hierarchy, such that only a small, well-connected core of the topology is globally

managed while the rest of the WAN uses distributed heuristics [72]. Doing so adds con-

straints to the WAN topology, and can complicate deployment; moreover, such distributed

heuristics have been shown to be sub-optimal [71].

2.3.1 Multi-Commodity Flow Problems

In this section, we give some background on multi-commodity flow problems. Given a set

of nodes, capacitated edges, and demands between nodes, a flow allocation is feasible if it

satisfies demand and capacity constraints. The goal of a multi-commodity flow problem is

to find a feasible flow which optimizes a given objective; Table 2.2 lists some examples.

The fastest algorithms [53,80] are approximate; i.e., given a parameter ε, they achieve at

least (1−ε)× the optimal value. However, their runtime complexity is at least quadratic (see

Table 2.2). Moreover, these solutions allow demands to travel on any edge, thus requiring

millions of forwarding table entries at each switch for thousand-node topologies.

Instead, production systems [71, 76] restrict flow to a small number of pre-configured

paths per commodity, which reduces the required forwarding table entries by 10–100×.

Using notation from Table 2.1, the feasible flow over a pre-configured set of paths can

be defined as:
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Terms Definitions
V , E ,D,P Sets of nodes, edges, commodities, and paths

N,M,K The numbers of nodes, edges, commodities, and paths, i.e., N =
|V|,M = |E|, K = |D|

e, ce, p Edge e has capacity ce; path p is a set of connected edges

(sk, tk, dk) Each commodity k in D has source and target nodes (sk, tk ∈ V)
and a non-negative demand dk.

f , fpk Flow assignment vector for a set of commodities, and the flow for
commodity k on path p.

Table 2.1: Notation for framing multi-commodity flow problems.

FeasibleFlow(V , E ,D,P) ,
{
fk | ∀k ∈ D and (2.1)

fk =
∑

p∈Pk

fpk , ∀k ∈ D (flow for commodity k)

fk ≤ dk, ∀k ∈ D (flow below demand)
∑

∀k,p∈Pk,e∈p

fpk ≤ ce, ∀e ∈ E (flow below capacity)

fpk ≥ 0 ∀p ∈ P , k ∈ D (non-negative flow)
}

With this definition, we can define multiple objectives that we may wish to optimize for in

the WAN. For example, maximizing the total flow in the network can be expressed as:

MaxFlow(V , E ,D,P) ,max
f

∑

k∈D

fk (2.2)

s.t. f ∈ FeasibleFlow(V , E ,D,P)

Production SDN-based TE systems at large enterprises use linear optimization-based

solvers [71, 72, 76]. On WANs with thousands of nodes, the optimization problem could

have millions of variables and equations just to verify that a flow allocation is feasible.2

2Specifically, over K variables and K +M equations; if N > 103, K > 106
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Objective
function

Additional constraints Used in Best known complexity

Max Total Flow max
∑
i∈D

fk None [71, 76] O(M2ε−2 logO(1)M) [53]

Max Concurrent
Flow

maxα dkα ≤ fk, ∀k ∈ D [27, 77, 79] O(ε−2(M2 +KN) logO(1)M) [80]

Min-Max Link
Utilization

min z
∑

∀k,p∈Pk,e∈p
fpk ≤ z, ∀e ∈ E [86] O(ε−2γK logO(1)M) [49]

Table 2.2: We illustrate a few different multi-commodity flow problems, all of which can be defined
over FeasibleFlow in Equation 2.1 but optimize for different objectives and can have additional
constraints; see notation in Table 2.1. More problems are discussed in [15].

In addition to repeatedly solving global optimizations, these TE schemes must maintain

an up-to-date view of the topology, gather desired volumes for demands and update traffic

splits at switches based on the result of the optimization.

Our production experience is that most of these repetitive steps have a latency of a

few RTTs (round trip times); therefore, solving the optimization dominates, especially on

large topologies. Moreover, demands are limited to their allocated rates in software at the

source servers and thus allocating less than the full desired rate need not result in packet

loss [71]. Finally, applications that contribute a large fraction of the bytes moving between

datacenters are elastic in short timescales (e.g., large dataset transfers for data analytics).

That is, these apps seek a fast completion time but do not need a large rate in every op-

timization epoch. Some other applications have a decreasing marginal utility as their rate

allocation increases such as video streams of varying quality [85]. Today’s SDN-based TE

solutions [71, 76] use multiple priority classes to maximize allocations for elastic traffic

without affecting the latency-sensitive traffic.

2.4 Changing Demands: Analysis of Production Traffic

In the previous chapter, we showed the scalability challenges of traffic engineering on pub-

licly available WAN topologies via a simple experiment that measured TE solver runtime

vs. topology size (see Figure 1.2). We also claimed that the changes in demands—the dy-

namic nature of today’s traffic—can also lead to poor utilization. A natural question arises:

just how much do we observe in today’s datacenter WANs?
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Figure 2.3: Production traffic on a Microsoft datacenter WAN over a several-month period. For
privacy considerations, we plot the normalized demand, rather than the absolute traffic volume over
time. The change in demand between any two successive traffic matrices is substantial: the average
change is 35%, and, in 20% of the cases, the delta is over 45%.

To answer this question, we obtained and analyzed the traffic matrices from a produc-

tion WAN at Microsoft over a several-month period from 2019. Figure 2.3 plots the nor-

malized demand over time. As the Figure demonstrates, the change in traffic demand from

one 5-minute window to the next is substantial: the average change is 35%, and, in 20% of

the cases, the demand is over 45%. Microsoft solves a global flow allocation problem every

few minutes, and we analyzed the traffic that will remain unsatisfied if the flow allocation

from the previous window were to be used instead of computing a new allocation. We see

that the median loss is 13%; in 20% of the cases, over 20% of the demand remains unsat-

isfied. We verify that computing a new allocation will satisfy all of the demand; using the

previous window’s allocation causes loss because some datacenter pairs may receive more

flow in the previous allocation than their current demand, while other datacenter pairs go

unsatisfied. Given this data, computing a new allocation in each time window is needed to

carry more traffic on the WAN.



Chapter 3

NCFlow

3.1 Introduction

In this chapter, we discuss NCFlow, a more scalable algorithm for traffic engineering that

leverages geographic partitioning. NCFlow is specifically designed for the maximum total

flow objective; we show that, compared to the state of the art, NCFlow is substantially

faster at the expense of a small amount of flow. By using a faster solver like NCFlow,

WAN operators can reduce loss when faults occur and carry more traffic on the network by

tracking demand changes.

Our solution is motivated by the observation that WAN topologies and demands are con-

centrated: the topology typically has well-connected portions separated by a few, lower-

capacity edges, and more demand is between nearby datacenters. This is likely due to

multiple operational considerations: i) submarine cables have become shared choke points

for connectivity between continents [60, 81](see Figure 3.1), ii) the connectivity over land

follows the road or rail networks along which fiber is typically laid out, and iii) enter-

prises build datacenters close to users, then steer traffic to nearby datacenters [16,125,143].

Therefore, more capacity and demand are available between nearby nodes; an analysis of

data from a production WAN at Microsoft in §3.2 supports this observation.

We leverage this concentration of capacity and demand to partition the WAN geograph-

ically, thereby decomposing the global flow problem into several smaller problems, many

of which can be solved in parallel. As shown in Figure 3.3, we divide the network into

18
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Figure 3.1: Submarine cables serve as choke points in global datacenter WAN topologies; figure is
excerpted from [126].

multiple connected components, which we refer to as clusters. We then solve modified

flow problems on each cluster, as well as on the contracted network, where nodes are clus-

ters and edges connect clusters that have connected nodes. Prior work [1,11,23] notes that

Google and other map providers use different contractions to compute shortest paths on

road network graphs. Our goal is to closely match the multi-commodity max flow solution

in quality (i.e., carry nearly as much total flow), while reducing the solver runtime and

number of required forwarding entries. We discuss related work in §3.7; to our knowledge,

we are the first to demonstrate a practical technique for multi-commodity flow problems on

large WAN topologies.

Solving flow problems on the contracted network poses two key challenges:

1. How to partition the network into clusters? More clusters leads to greater parallelism,

but maximizing the inter-cluster flow requires careful coordination between the sub-

problems at multiple clusters.

2. How to design the sub-problems for each cluster to improve speed while reducing

inconsistencies in allocation? The sub-problem for a cluster has fewer nodes and

edges to consider, but it will not be be faster if it must consider all node pairs whose

traffic can pass through the cluster.

Our solution NCFlow achieves a high-quality flow allocation with a low runtime and
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WAN Topology

Figure 3.2: NCFlow’s workflow. Our proposed solution first computes clusters on the WAN topol-
ogy, based on the topology itself and the history of traffic demands. (The latter is optional and
depends on the clustering algorithm’s required inputs.) In addition to the clusters, a set of cluster-
aware paths are also computed. Then, for each new traffic matrix, NCFlow allocates flows based on
the clusters and paths from the previous step.

space complexity by addressing each of these challenges in turn. First, we contract the net-

work using well-studied algorithms such as modularity-based clustering [42] and spectral

clustering [107], which are designed to identify the choke-point edges in a network. Sec-

ond, we bundle commodities whose sources and/or targets are in the same cluster, treating

them as a single commodity. In Figure 3.3 for example, when routing traffic from source

nodes in the red cluster to target nodes in the green cluster, the yellow cluster treats that

traffic as a single bundled commodity, instead of (up to) 24 individual commodities. Doing

so can lead to inconsistent flow allocations between clusters (which we explain in §3.3.1),

and we devise careful heuristics to provably avoid them (§3.3.2). Finally, we show that

bundling demands between clusters provides an additional benefit to WAN operators: we

can reduce the number of forwarding entries needed at switches by reusing pathlets within

clusters and traffic splitting rules across multiple demands (§3.3.5).

Figure 3.2 shows the workflow for NCFlow. First, we choose appropriate clusters and

paths using an offline procedure over historical traffic—these choices are pushed into the

switch forwarding entries. This step happens infrequently, such as when the topology

and/or traffic changes substantially. Then, online (e.g., once every few minutes), NCFlow

computes how best to route the traffic over the clusters and paths, similar to deployed solu-

tions [71, 72, 76].

Overall, our key contributions are:
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Cluster

Figure 3.3: Example clustering of a WAN to produce a contracted network for NCFlow. The
original network on the left is divided into clusters, shown with different background colors. The
contracted network is on the right.

• We propose NCFlow, a decomposition of the multi-commodity max flow problem

into an offline clustering step and an online, provably feasible, algorithm that solves

a set of smaller sub-problems in parallel.

• We evaluate NCFlow using real traffic on a large enterprise WAN, as well as synthetic

traffic on eleven topologies from the Internet Topology Zoo [82]. Our results show

that, for multi-commodity max flow, NCFlow is within 2% of the total flow allo-

cated by state-of-the-art path-based LP solvers [71,72,76] in 50% of cases; NCFlow

is within 20% in 97% of cases. Furthermore, NCFlow is at least 8× faster than

path-based LP solvers in the median case; in 20% of cases, NCFlow is over 30×
faster. Lastly, NCFlow requires 2.7–16.7× fewer forwarding entries in the evalu-

ated topologies. NCFlow also compares favorably to state-of-the-art approximation

algorithms [53, 80] and oblivious techniques [86, 118].

• We show that, as a fast approximate solver, NCFlow can be used to react quickly

to demand changes and link failures. Specifically, in comparison to TEAVAR [27],

NCFlow carries more flow when no faults occur and suffers about the same amount

of total loss during failures.

We have open-sourced NCFlow at https://github.com/stanford-futuredata/

pop-ncflow.

https://github.com/stanford-futuredata/pop-ncflow
https://github.com/stanford-futuredata/pop-ncflow
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3.2 Background and Motivation

In this section, we provide summary of the main findings which have influenced NCFlow

and shaped our design choices. Our observation that demand and capacity are concentrated

among nearby nodes in the WAN topology is grounded on the following measurements

from a production WAN at Microsoft:

Demand properties:

• On average, 7% (or 16%) of the node pairs account for half (or 75%) of the total

demand.

• When nodes are divided into a few tens of clusters, 47% of the total traffic stays

within clusters. If the demands were distributed uniformly across node pairs, only

8% of the traffic would stay within clusters; thus the demand within clusters is about

6× larger than would be expected from a uniform distribution.

WAN topology properties:

• When nodes are divided into tens of clusters, 76% of all edges and 87% of total

capacity is within clusters.

• The skew in capacity is small: the ratio between the largest edge capacity and the

mean is 10.4.

• The skew in node degree is also small: the average node degree is 3.9, with σ = 2.6;

the max is 16.

• Relative to the network size (hundreds of nodes), the average network diameter (=11)

and the average shortest-path length (= 5.3) are very small.

Motivated by the above analyses, NCFlow seeks to be a fast solver for large WAN topolo-

gies by leveraging the concentration of traffic demands and capacity. In this chapter, we

consider the problem of maximizing the total flow across all demands (Equation 2.2).
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Terms Definitions
Vagg, Eagg,Dagg,Pagg Nodes, edges, commodities, and paths in the aggregated graph
Vx, Ex,Dx,Px Subscript denotes entities in the restricted graph for cluster x
x, η Each cluster x is a strongly connected set of nodes and η is the

number of clusters
k,Kxy, Ksy, Kxt An actual commodity k; the rest are bundled commodities from

one source (s) or all nodes in a cluster (x) to a target (t) or to all
nodes in a cluster (y)

Table 3.1: Additional notation specific to NCFlow.

3.3 NCFlow

In this section, we describe NCFlow. Our steps are as shown in Figure 3.2. Offline, based

on historical demands, we divide the network into clusters and determine paths. Further

details are in §3.3.4. Online, we allocate flow to the current demands by solving a carefully

constructed set of simpler sub-problems, some of which can be solved independently and

in parallel. We describe these sub-problems in §3.3.1. Although they can be solved quickly,

disagreements between independent solutions can lead to infeasible allocations; we present

a simple heuristic in §3.3.2 that provably leads to feasible flow allocations. In §3.3.3,

we discuss extensions that increase the total flow allocated by NCFlow. We also show

sufficient conditions under which NCFlow is optimal and matches the flow allocated by

MaxFlow. Finally, in §3.3.5, we discuss how NCFlow uses fewer forwarding entries by

reusing pathlets within clusters and splitting rules for different demands.

3.3.1 Basic Flow Allocation

We begin by describing a simple (but incomplete) version of NCFlow’s flow allocation

algorithm; the pseudocode is in Figure 3.4. We continue using Figure 3.3 as a running

example. The basic algorithm proceeds in four steps.

In the first step, we allocate flow on the aggregated graph; as shown in MaxAggFlow

in Figure 3.4. In the aggregated graph, an example of which is in Figure 3.3 (right), nodes

are clusters and the edges are bundled edges from the original graph—the edge between

the red and yellow clusters corresponds to the five edges between these clusters on the
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MaxAggFlow

MaxClusterFlow

MinPathE2E

SrcTargetMax

f1 ,MaxFlow(Vagg, Eagg,Dagg,Pagg)

∀clusters x, fx2 ,MaxFlow(Vx, Ex,Dx,Px)
s.t. NoMoreFlowThruCluster(f , f1, x) (see §A.3)

f3 ,
{
fk,∀k ∈ Dagg

}
s.t.

s.t. NoMoreAlongPaths(f , f2) (see §A.3)

∀clusters x, y,x 6= y, fxy4 ,arg max
∑

k∈Kxy

fk

s.t.
∑

k∈Ksy

fk ≤ fx2,Ksy , ∀s ∈ x;
∑

k∈Kxt

fk ≤ f y2,Kxt , ∀t ∈ y;

∑

k∈Kxy

fk ≤ f3,Kxy ; fk ≤ dk, ∀k ∈ Kxy

Figure 3.4: The basic flow allocation algorithm used by NCFlow; notation used here is defined
in Table 3.1.

actual graph. Similarly, we bundle demands on the aggregated graph: the demand Kxy

between the clusters x and y corresponds to all of the demands whose sources are in cluster

x and targets are in cluster y. The resulting flow allocation (f1) accounts for bottlenecks

on the edges between clusters. However, this flow may not be feasible, since there may be

bottlenecks within the clusters.

In the second step, we refine the allocation from step 1 to account for intra-cluster

demands and constraints. Specifically, we allocate flow for the demands whose sources

and targets are within the cluster. We also allocate no more flow than was allocated in f1

for the inter-cluster flows. MaxClusterFlow in Figure 3.4 shows code for this step. We

note a few details:

• We use virtual nodes to act as the sources and targets for the inter-cluster flows; the

flow allocated in f1 determines which virtual node (i.e., which neighboring cluster)

is the sender or the receiver for an inter-cluster demand.
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Figure 3.5: An example illustrating how the flow allocated in MaxAggFlow translates to constraints
on the flow to be allocated in MaxClusterFlow at two different clusters.

• Figure 3.5 shows two examples on the right where the virtual nodes are drawn using

squares.

• Figure 3.5 also shows the NoMoreFlowThruCluster constraints for demands from

sources in the red cluster to targets in the black cluster (depicted as x and z respec-

tively). On the aggregated graph, the flow for this demand takes the two paths shown.

In the red cluster, as shown in the equation, the traffic from all sources (s), along mul-

tiple paths (r) to the virtual node, is restricted to be no more than what was allocated

in f1.

• Figure 3.5 on the right also shows a more complex case that happens in the yellow

cluster. Here, the traffic arrives at one virtual node but can leave to multiple virtual

nodes. In MaxClusterFlow, we set up paths between all pairs of virtual nodes. As

shown in the equation, the traffic leaving the red virtual node on paths (r) to either of

the other virtual nodes must be no more than the total flow on paths p and q from f1.

• Observe that bundling demands ensures fewer variables and constraints for Max-

ClusterFlow. The demand from red to black clusters comprises twenty node pairs

in the actual graph in Figure 3.3 (left); four sources in the red cluster and five targets

in the black cluster. However, the MaxClusterFlow for the red cluster only has four

bundled demands, from each source to the virtual node, and the yellow cluster has

just one bundled demand from and to virtual nodes.

In the third step, we reconcile end-to-end; that is, we find the largest flow that can be

carried along each path on the aggregate graph. As shown by MinPathE2E in Figure 3.4,

for each bundle of demands and each path, we take the minimum flow allocated (fx2 ) at

each cluster on the path.
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Problem # of Nodes # of Edges # of Commodities
MaxFlow N M K

MaxAggFlow η ≤ min(M, η2) ≤ min(K, η2)

MaxClusterFlow ∼ N
η

+ η ∼ M
η

+ 2η ∼ K
η2

+ 2N
η

+ η2

Table 3.2: Sizes of the problems in Figure 3.4 using notation from Tables 2.1 and 3.1. Just verifying
that flow is feasible (i.e., FeasibleFlow in Equation 2.1) uses O(K + M) number of equations
and O(K) variables. NCFlow has one instance of MaxAggFlow and executes the η instances of
MaxClusterFlow in parallel. MinPathE2E and SrcTargetMax are relatively insignificant.

The flow allocation for the demands in a cluster x can be read directly from the fx2

solution of MaxClusterFlow. For demands that span clusters, however, more work remains

because the steps thus far do not directly compute their flow. In particular, f3 allocates

flow for cluster bundles, such as flows for all demands whose sources are in cluster x and

whose targets are in cluster y. The corresponding per-cluster flow allocations, fx2 and fy2 ,

allocate flow from a source node and to a given target, respectively. Thus, in the final step,

SrcTargetMax, we assign the maximal flow to each inter-cluster demand that respects all

previous allocations.

Properties of Basic Flow Allocation

Solver runtime: The numbers of equations and variables in the sub-problems are shown

in Table 3.2. If the number of clusters η is 1, note that there is exactly one per-cluster prob-

lem, MaxClusterFlow, which matches the original problem from Eqn. 2.2. When using

a few tens of clusters, we will show in §3.5 that all of the sub-problems are substantially

smaller than the original problem (MaxFlow).

Feasibility: The flow allocated by Figure 3.4 satisfies demand and capacity constraints; we

will prove this formally in §A.1.1. For demands whose source and target are in different

clusters, however, disagreements may ensue since the different problem instances assign

flow to different bundles of edges and demands. We illustrate two such examples in Fig-

ure 3.6; both have 1 unit of demand from s1 to t1 and from s2 to t2. The dashed edges have

a capacity of ε� 1 and all of the other edges have a very large capacity.

• The example in Figure 3.6a illustrates an issue with bundling edges. The actual graph
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(a) Disagreement arising from bundling edges:
As shown on the right, the basic flow allocation
algorithm in Figure 3.4 will compute a flow of
2 units, but only 4ε units of flow can be carried;
see §3.3.1.
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(b) Disagreement arising from bundling de-
mands: As shown on the right, the basic flow al-
location algorithm in Figure 3.4 will again com-
pute a flow of 2 units, but only 4ε units of flow
can be carried.

Figure 3.6: Two examples that illustrate how disagreements in flow allocation can occur in
NCFlow’s basic flow allocation algorithm.

5

5

(a) For the disagreement problem in Fig-
ure 3.6a, a different clustering choice that does
not lead to such a disagreement.

(b) For the disagreement problem in Figure 3.4,
a different clustering choice that does not lead
to such a disagreement.

Figure 3.7: Impact of different clustering choices in NCFlow.

on the left can only carry 5ε units of flow for each demand. However, as the figures

on the right show, MaxAggFlow allocates two units of flow since the four edges

between these two clusters can together carry all of the two units of demand. The

MaxClusterFlow instances also allocate two units of flow as shown. The discrep-

ancy arises because the problems in Figure 3.4 do not know that the top egress of the

left cluster can take in all of the demand of s1 but has only a low capacity to t1.

• The example in Figure 3.6b illustrates an issue with bundling demands. Here too,

observing the actual network on the left will show that 2ε units can be carried for

each demand split evenly between the top and the bottom path. Again, as the figures

on the right show, the basic flow allocation algorithm will conclude that both units of

demand can be carried. Here, the discrepancy arises from the bundling of demands,

the problems in Figure 3.4 cannot discern that the MaxClusterFlow instance of the

left cluster sends the first demand to the brown cluster while the MaxClusterFlow

of the right cluster wants to receive the second demand from the brown cluster.
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Figure 3.8: To guarantee feasibility, each cluster bundle is allocated flow on only one path on the
aggregated graph (left) and on only one edge between each pair of clusters (right); the usable path
and edges are shown in dark red. Note that multiple paths can still be used within clusters.

3.3.2 A feasible heuristic

To avoid end-to-end disagreements, we make two simple changes to the basic flow alloca-

tion algorithm in §3.3.1.

First, when solving MaxAggFlow, only one path on the aggregated graph can be used

for all of the demands between a given pair of clusters; we call such groups of demands to

be cluster bundles. Next, between a pair of connected clusters, only one edge can carry the

flow for a cluster bundle. Figure 3.8 shows in dark red an example path for a cluster bundle

and the allowed edges between clusters; we also show the intra-cluster paths that can carry

flow for this bundle.

There are multiple ways to avoid disagreements while keeping the problem sizes small

via bundling. We discuss the above changes here because they are simple and sufficient.

Specifically, we show that:

Theorem 1. The algorithm in Figure 3.4, when constrained as discussed above, will always

output a feasible flow.

Proof. The proof is in §A.1.2. Intuitively, these changes suffice because the independent

decisions made by different problems in Figure 3.4 cannot disagree; per cluster bundle, all

problem instances allocate flow to the same edge and path.

3.3.3 Stepping towards optimality

The flow allocation algorithm described thus far is fast but not optimal; that is, it may al-

locate less total flow over all demands than the flow allocated by solving the larger global
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Figure 3.9: In contrast with Figure 3.8, NCFlow produces a different flow allocation in the second
iteration of the algorithm. For the same cluster bundle, NCFlow chooses a different path on the
aggregate graph and also chooses different inter-cluster edges. The chosen paths and edges are
again shown in red.

problem (MaxFlow from Eqn. 2.2). There are a few reasons why this happens. The Max-

AggFlow in Figure 3.4 allocates flow on paths through clusters without knowing how much

flow the clusters can carry. Switching the order, i.e., solving MaxClusterFlow before Max-

AggFlow, could be worse because each cluster must allocate flow without knowing how

much flow can be carried end-to-end. Furthermore, the heuristic in §3.3.2 constrains each

cluster bundle to use only one edge between clusters and one path on the aggregated graph.

We now discuss a few extensions to increase the flow allocation.

First, we re-solve the problems in Figure 3.4 multiple times. A simple way to do this

would be to deduct the allocated flow and use the residual capacity on edges in the next

iteration. Also, we pick different edges between clusters and/or different paths on the

aggregated graph in different iterations (see Figure 3.9 for an example). The number of

iterations is configurable; we continue as long as the total flow increases in each iteration

by at least a pre-specified amount (say 5%). One could apply other policies such as a

timeout. We show in §3.5 that a small number of iterations suffice for a sizable increase

in the total flow. We will also show that later iterations finish faster than the first iteration,

perhaps because there are fewer demands remaining to satisfy.

Next, we empirically observe that the choice of clusters and edges/paths to use in differ-

ent iterations has an effect on flow allocation. For instance, the disagreements in Figure 3.6

go away by using a different choice of clusters—specifically, see Figure 3.7a and Fig-

ure 3.7b. We discuss how NCFlow precomputes cluster and edge/path choice in §3.3.4.

To sum up, we prove that flow allocation will be optimal when a few sufficient condi-

tions hold:
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Theorem 2. The method in Figure 3.4 leads to the optimal flow allocation when any path

can be used within each optimization and the number of clusters is 1; or the number of

clusters is equal to the number of nodes; or all of the following conditions hold:

• The aggregated graph Gagg is a tree.

• Only one edge connects any pair of clusters.

• All demands are satisfiable.

Proof. By optimal, we mean that the total allocated flow must be as large as an instance

of Equation A.4 wherein any path can be used. The proof is in §A.1.3. Intuitively, when the

number of clusters is 1 and any paths can be used, a single instance of MaxClusterFlow is

identical to the optimal problem in Equation A.4. Similarly, when the number of clusters

equals the number of nodes, MaxAggFlow is identical to the optimal problem. Further-

more, the conditions listed lead to optimality because the optimal flow allocation can be

transformed into an allocation that can be outputted by Figure 3.4.

Even though the listed conditions appear restrictive, note that the topology within clus-

ters can be arbitrary. We will show in §3.5 that NCFlow offers nearly optimal flow alloca-

tions even when the above conditions do not hold.

3.3.4 Choosing clusters and paths

The choice of clusters and paths affects both the solution quality and runtime of NCFlow.

We cast cluster choice as a graph partitioning problem [33,104,137] with these objectives:

• Concentrated with a low cut: NCFlow can output better flow allocations when

much of the total demand and the total edge capacity is between nodes in the same

cluster.

• Balanced cut: Intuitively, NCFlow will have a smaller runtime when the complexity

of MaxAggFlow balances with that of MaxClusterFlow. Recall from Table 3.2 that

the former depends on the number of clusters whereas the latter depends on the size

of the largest cluster.
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We empirically observe, based on experiments with many WANs and different types of

demands, that:

• On a graph with N nodes, about
√
N clusters, irrespective of the clustering tech-

nique, leads to the best result, i.e., smallest runtime and fewest forwarding entries

while allocating nearly the largest amount of flow possible; see Figure 3.12.

• When choosing the same number of clusters, one of the three considered clustering

techniques (described below) generally performs better than the others but not in all

cases; see Figure A.4.

Thus, the optimal clustering choice for a WAN is unclear; it is possible that hand-tuning

or using a learning technique may lead to better-performing clusters. Nevertheless, any of

the three simple clustering schemes discussed below already suffice for NCFlow to improve

substantially over baselines.

We consider the following clustering choices because they are simple and fast; unless

otherwise noted, results in this paper use FMPartitioning.

• FMPartitioning [26,42] divides nodes into clusters so as to maximize a “modularity”

score which prefers more edges to lie within than between clusters. In NCFlow, we

apply modularity-based clustering with edge weights set to their capacity.

• Spectral clustering [107] computes eigenvectors of the weighted adjacency matrix

and chooses a desired number of the top eigenvectors as cluster heads; each node is

assigned to the cluster of their closest eigenvector (e.g., using k-means).

• Leader Election picks a desired number of nodes at random as leaders and assigns

each other node to the closest leader; wherein, distance is measured as the path length

using invcap edge weights.

Some other clustering techniques [83, 104, 137] can balance cluster sizes or trade-off

between concentration and balance but are more complex computationally; it is possible

that using such schemes can further improve NCFlow.

Path choice in NCFlow: On the aggregated graph and on each cluster graph, we pre-

compute offline a small number of paths between every pair of nodes. We consider the

following different path choices and pick paths that lead to the largest flow allocation on

historical demands:
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• k-shortest paths [144] with edge weight of 1 or 1
ce

where ce is the capacity of edge e

and k = 4, 8 or 16.

• As above, but with the additional requirement that the paths for a node pair are edge-

disjoint [105].

NCFlow also pre-computes offline i) a pseudo-random choice of which edges to use

between a pair of connected clusters in each iteration, and ii) which path on the aggregated

graph to use for each cluster bundled demand in each iteration.

3.3.5 Setting up switch forwarding entries

NCFlow uses many fewer switch forwarding entries than prior works due to the following

reasons.

First, the paths along which NCFlow allocates flow can be thought of as a sequence of

pathlets [64, 90, 141] in each cluster connected by crossing edges between clusters. Fig-

ures 3.8 and 3.9 illustrate such paths on the right. This observation is crucial because a

pathlet can be reused by multiple demands. For example, in Figure 3.8, the flow from any

source in the red cluster to any target in the grey cluster would use the same pathlets shown

in the yellow, green, and blue clusters. Prior work [71, 72], on the other hand, establishes

paths for each demand. Using pathlets has two advantages. The number of pathlets used by

NCFlow is about η times less than the number of paths used by prior works.1 Furthermore,

a typical pathlet has fewer hops than a typical end-to-end path. Thus, NCFlow uses many

fewer rules to encode paths in switches.

Next, whenever NCFlow allocates flow at the granularity of cluster bundles, all of the

demands in a bundle take the same paths and are split in the same way across paths. Hence,

NCFlow uses one traffic splitting rule for all demands in such bundles. For instance, the

demands from source s in the red cluster in Figure 3.8 to any target in the grey cluster are

split with the same ratio across the same pathlets in all clusters (except the grey cluster

where they take different pathlets to reach their different targets). Thus, with NCFlow, the

1More precisely, the number reduces from PN(N − 1) to
∑
x P (Nx)(Nx − 1) where P is the number

of paths per node pair, the N nodes are divided into η clusters, and cluster x has Nx nodes. If clusters are
evenly sized, Nx = N/η, and the ratio of these terms is ∼ η.
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number of splitting rules at a source decreases by a factor of
√
N/2.2

The paths and splitting rules to push into switch forwarding tables are determined by

the offline component of NCFlow and only change occasionally. After each allocation,

only the splitting ratios change. More details on the data-plane of NCFlow such as how to

compute the total flow that can be sent by each demand and the splitting ratios as well as

how to move packets from one pathlet to the next are in section A.2. In §3.5, we measure

the numbers of rules used by NCFlow.

3.4 Implementing NCFlow

Our current prototype of NCFlow is about 5K lines of Python code, which invokes Gurobi [68]

v8.1.1 to solve all of the optimization problems. For clustering WAN topologies, we

adapt [43] to find clusters that maximize modularity; we also use our own implementa-

tion of NJW spectral clustering [107]. We use a grid search over the number of clus-

ters (η) and the above clustering techniques to identify the best performing choice for

each topology on a set of historical traffic matrices. To compare with state-of-the-art tech-

niques, we customize the public implementations of SMORE [86, 87] and TEAVAR [27].

We have also implemented Fleischer’s algorithm [53]; our implementation is about 10×
faster than public implementations [74]3 since we carefully optimize a key bottleneck in

Fleischer’s algorithm. All of these code artefacts are available on GitHub at https:

//github.com/stanford-futuredata/pop-ncflow.

3.5 Evaluation

We evaluate NCFlow on several WAN topologies, traffic matrices, and failure scenarios to

answer the following questions:

• Compared to state-of-the-art LP solvers and approximate combinatorial algorithms,

does NCFlow offer a good trade-off between runtime and total flow allocation? Is it
2A source uses N −1 splitting rules in prior works but with NCFlow only requires Nx+η−2 rules when

the source’s cluster hasNx nodes; if clusters are evenly sized and η ∼
√
N , the ratio of these terms is

√
N/2.

3https://github.com/eigenpi/mcf_solver

https://github.com/stanford-futuredata/pop-ncflow
https://github.com/stanford-futuredata/pop-ncflow
https://github.com/eigenpi/mcf_solver


CHAPTER 3. NCFLOW 34

Topology # Nodes # Edges # Clusters

PrivateLarge ∼ 1000s ∼ 1000s 31
Kdl 754 1790 81
PrivateSmall ∼ 100s ∼ 100s 42
Cogentco 197 486 42
UsCarrier 158 378 36
Colt 153 354 36
GtsCe 149 386 36
TataNld 145 372 36
DialtelecomCz 138 302 33
Ion 125 292 33
Deltacom 113 322 30
Interoute 110 294 20
Uninett2010 74 202 24

Table 3.3: Some of the WAN topologies used in our evaluation; see §3.5.1. The networks in blue
are publicly available topologies from the Internet Topology Zoo [82]; they can be found at http:
//www.topology-zoo.org/.

substantially faster, with only a small decrease in total flow?

• For real-world TE scenarios, in which flow solvers must adapt to changing demands

and faults, how much benefit does NCFlow offer relative to the state-of-art?

• How do our various design choices in NCFlow impact its performance?

3.5.1 Methodology

Here, we describe our methodology—the topologies, traffic, baselines, and metrics used in

our evaluation.

Topologies: We use two real topologies from a large enterprise—PrivateSmall is a pro-

duction internet-facing WAN with hundreds of sites, and PrivateLarge is a larger WAN

that contains many more sites. We also use several topologies from the Internet Topology

Zoo [82] and reuse topologies used by prior works [27, 76]. Table 3.3 shows details for

some of the used topologies; note that the topologies shown are 10× to 100× larger than

those considered by prior work [27, 71, 76, 86, 96].

Traffic Matrices (TMs): We benchmark NCFlow on traffic traces from PrivateSmall,

http://www.topology-zoo.org/maps/Kdl.jpg
http://www.topology-zoo.org/maps/Cogentco.jpg
http://www.topology-zoo.org/maps/UsCarrier.jpg
http://www.topology-zoo.org/maps/Colt.jpg
http://www.topology-zoo.org/maps/GtsCe.jpg
http://www.topology-zoo.org/maps/TataNld.jpg
http://www.topology-zoo.org/maps/DialtelecomCz.jpg
http://www.topology-zoo.org/maps/Ion.jpg
http://www.topology-zoo.org/maps/Deltacom.jpg
http://www.topology-zoo.org/maps/Interoute.jpg
http://www.topology-zoo.org/maps/Uninett2010.jpg
http://www.topology-zoo.org/
http://www.topology-zoo.org/
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which contain the total traffic between node pairs at 5-minute intervals. We also generate

the following kinds of synthetic traffic matrices for all topologies:

• Poisson
(
λ, δ
)

models demands with varying concentration; the demand between

nodes s and t is a Poisson random variable with mean λδdst , where dst is the hop

length of the shortest path between s and t and δ ∈ [0, 1) is a decay factor. We

choose δ close to 0 or to 1 to model strongly and weakly concentrated demands,

respectively.

• Gravity
(
v
)

[18, 123]: The total traffic leaving a node is proportional to the total

capacity on the node’s outgoing links (parameterized by v); this traffic is divided

among other nodes proportional to the total capacity on their incoming links.

• Uniform
(
[0, a)

)
: The traffic between any pair of nodes is chosen uniformly at ran-

dom, between 0 and a.

• Bimodal
(
[0, a), [b, c), p

)
[18]: A p fraction of the node pairs, chosen uniformly at

random, receive demands from Uniform
(
[b, c)

)
while the rest receive demands from

Uniform
(
[0, a)

)
. We use p = 0.2.

For each above model, we select parameters such that fully satisfying the traffic matrix

leads to a maximum link utilization of about 10% in each topology. Then, we scale all

entries in the TM by a constant α ∈ {1, 2, 4, 8, 16, 32, 64, 128}. Doing so creates demands

that range from easily satisfiable to only partially satisfiable; with α = 128, the satisfiable

portion of the demand varies between 25-70%. We generate five samples for each traffic

model and scale factor for each topology.

Baselines: We compare NCFlow with these techniques:

Path Formulation (PF4) solves the multi-commodity max-flow problem shown in Equa-

tion 2.2 using k-shortest paths between node pairs where k = 4. Results for other path

choices are in §A.6.4.

PF Warm Start (PF4w) matches PF4 except that it allows the LP solver to “warm start”;

that is, over a sequence of traffic matrices, the flow allocated to the previous TM is used

as a starting point to compute allocation for the next TM. When traffic changes are small,

warm start leads to faster solutions.
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CSPF: We implement Constrained Shortest Path First [58], a greedy heuristic that we pre-

viously described in §2.3.

Approximate Combinatorial Algorithms: Fleischer’s algorithm [53] is the best-known

approximation for MaxFlow. We use two variants: Fleischer-Path where flow is restricted

to a path set and Fleischer-Edge without any path restrictions. We show results here for

an approximation guarantee of 0.5; that is, the techniques must achieve at least half of the

optimal flow allocation.

SMORE [86] allocates flow dynamically on paths that are pre-computed using Räcke’s

Randomized Routing Trees (RRTs). We use the code from [87] to compute paths. Since

the LP in [87] requires demands to be fully satisfiable, we implement a variant, SMORE*,

that maximizes the total flow on the computed paths, regardless of demand satisfiability.

TEAVAR [27] models link failure probabilities and computes flow allocations given an

availability target.4 We implement a variant, TEAVAR*, that maximizes the total flow5;

further details are in section A.5.

Clusters, Paths, and # of Iterations: Table 3.3 shows the number of clusters used by

NCFlow per topology. Here, we report results on edge-disjoint paths, chosen using in-

verse capacity as the edge length; results for other path choices are qualitatively simi-

lar (see §A.6.4). All schemes that use paths (i.e., PF4, Fleischer-Path, TEAVAR*, and

NCFlow) use the same method to compute paths. For each iteration up to I = 6, we also

pre-compute offline the path to use on the aggregated graph, and the edge to use between

connected clusters for each cluster bundle.

Metrics: We compare the schemes on the following metrics:

• Relative total flow is the total flow achieved by a scheme relative to PF4.

• Speedup ratio is the runtime of each scheme relative to PF4. For LP-based methods,

we report the Gurobi solver runtimes, since models can be constructed once offline

in practice. For combinatorial methods, we report algorithm execution time. All

runtimes are measured on an Intel Xeon 2.3GHz CPU (E52673v4) with 16 cores and
4The open-source code for TEAVAR can be found at https://github.com/manyaghobadi/

teavar.
5TEAVAR solves the Maximum Concurrent Flow objective; see Table 2.2.

https://github.com/manyaghobadi/teavar
https://github.com/manyaghobadi/teavar


CHAPTER 3. NCFLOW 37

0.2 0.4 0.6 0.8 1.0 1.2
Total Flow, relative to PF4

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n 

of
 C

as
es

Better

CSPF
SMORE*

Fleischer-Path, ε=0.5
Fleischer-Edge, ε=0.5

NCFlow

(a) CDF of total flow relative to PF4

10−1 100 101 102 103

Speedup, relative to PF4 (log scale)

0.0

0.25

0.5

0.75

1.0

Better

(b) CDF of speedup relative to PF4

Figure 3.10: CDFs comparing NCFlow with state-of-the-art methods. With only a modest decrease
in total flow, NCFlow offers a substantial runtime speedup.

112 GB of RAM.

• FIB Entries: We measure the number of switch forwarding entries used.

3.5.2 Comparing NCFlow to the State of the Art

Figures 3.10a and 3.10b show cumulative density functions (CDFs) of the relative total

flow and speedup ratio for NCFlow and several baselines. These results consist of 2, 600

traffic matrices and 13 topologies. If a scheme matches the baseline PF4, its CDF will be a
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Figure 3.11: Comparing the number of forwarding entries used by various methods for the experi-
ments from Figure 3.10.

pulse at x = 1 in both figures; the fraction of cases to the left (or right) of x = 1 indicate

how often a scheme is worse (or better) than PF4. Note that the x-axis for the speedup ratio

is in log scale.

We see that SMORE*, shown using green dashed lines in the figures, modestly im-

proves the flow allocation (in 25% of the cases) while almost always taking longer to run

than PF4. Both effects are because SMORE* allocates flow on Räcke’s RRTs instead of

k-shortest paths.

The edge and path variants of Fleischer’s, shown using purple and red lines in the

figures, perform similarly; since they are approximate algorithms, they allocate less flow

than PF4 in roughly 50% of cases, but are also faster than PF4 in slightly less than 50% of

cases. We conclude that these approximate algorithms are not practically better than PF4.

In contrast, NCFlow, shown with dark blue lines in the figures, almost always allo-

cates at least 80% of PF4’s total flow, while achieving large speedups. In the median case,

NCFlow achieves 98% of the flow and is over 8× faster. These improvements accrue from

NCFlow solving smaller optimization problems than PF4.

Figures A.2 and A.3 tease apart the above results by load, traffic type and topology. Fig-

ures A.6–A.9 show results for alternate path choices. Taken together, these results indicate
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Figure 3.12: NCFlow’s performance when using different numbers of clusters on PrivateLarge.
The speedup ratio is plotted on the right y-axis in log scale; the other metrics use the left y-axis.

that NCFlow’s improvements hold across a variety of scenarios.

For the same experiments considered above, Figure 3.11 shows the number of switch

forwarding entries used in different topologies. (A full set of results is in Table A.1.) The

bottom plot is the total number of forwarding entries across all switches, while the top

shows the maximum for any switch. Note that both the x and y axes are in log scale.

NCFlow consistently uses fewer forwarding entries; using NCFlow offers a greater amount

of relative savings than switching from all edges to just a handful of paths per commodity.

The savings from NCFlow also increase with topology size. The reason, as noted in §3.3.5,

is that NCFlow reuses pathlets and traffic splitting rules for many different commodity.

3.5.3 Effect of Design Choices

Figure 3.12 shows how NCFlow’s performance varies with the numbers of clusters used

on PrivateLarge. While NCFlow allocates roughly the same amount of total flow, us-

ing about 30 clusters improves runtime and reduces forwarding entries. Figure A.4 com-

pares NCFlow’s performance when using different clustering techniques; more details are

in §A.6.2.

Recall from §3.3.3 that NCFlow uses multiple iterations of Figure 3.4. In the above

experiments, the first iteration alone accounts for 75% of the runtime and for roughly 90%
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Figure 3.13: Allocated flow and speedup relative to PF4 on a sequence of production TMs from
PrivateSmall. In half of the cases, NCFlow allocates at least 98.5% of the flow and is at least 8.5×
faster.

of the flow that is allocated by NCFlow. Later iterations are faster perhaps because they

have less traffic to consider.

Breaking down the runtime by the steps in Figure 3.4, we see cases where MaxClus-

terFlow accounts for over 70% of NCFlow’s runtime perhaps because the largest cluster

contains a large fraction of the nodes. Better cluster choice or recursively dividing the

largest clusters can further lower runtime.

3.5.4 NCFlow on Real-World Traffic

Here, we experiment with a sequence of traffic traces collected on the PrivateSmall WAN.

Figure 3.13 plots the moving average (over 5 windows) of the total flow and speedup rel-

ative to PF4 for two schemes—NCFlow in blue and PF4w in light blue. The figure shows

that PF4w’s warm start yields a median speedup of 1.66×. NCFlow achieves a consistently

higher speedup (8.5× in the median case), and the flow allocation is nearly optimal: the

median total relative flow is 98.5%, and NCFlow always allocates more than 93%.
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Figure 3.14: When demands change, how solver runtimes affect flow allocation on PrivateLarge:
Due to the slow runtime, PF4 and PF4w carry only 62% of the traffic that can be satisfied by
Instant PF4, a (hypothetical) scheme which has zero runtime. NCFlow carries 87% of the traf-
fic since its faster runtime compensates for its sub-optimality.

3.5.5 Tracking Changing Demands

Here, we evaluate the impact of a technique’s runtime on its ability to stay on track with

changing demands. Specifically, on the PrivateLarge topology, we use a time-series of

traffic matrices, wherein a new TM arrives every five minutes and the change from one TM

to the next is consistent with the findings in Figure 2.3. At each time-step, all techniques

have the opportunity to compute a new allocation for the current TM or to continue com-

puting the allocation for an earlier TM if they have not yet finished; in the latter case, their

most recently computed allocation will be used for the current TM. For example, a tech-

nique that requires five minutes to compute a new allocation will be always one window

behind, i.e., each TM will receive the allocation that was computed for the previous TM.

Figure 3.14 shows the fraction of demand that is satisfied by three different schemes;

we also show the value for an instantaneous scheme which is not penalized for its runtime.

PF4’s average runtime here is over 15 minutes; hence, as the orange dashed line shows,
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PF4 is able to compute a new allocation only for every third or fourth TM. This leads to

substantial demand being unsatisfied: for node pairs whose current demand is larger than

before, PF4 will not allocate enough flow. On the other hand, node pairs whose current

demand is less than their earlier demand will be unable to fully use PF4’s allocation. As

the figure shows, PF4 only satisfies 53% of the changing demand on average, whereas

Instant PF4 satisfies 87% of the demand.

PF4w (the dash-dot light blue line), where the solver warm starts using the previous

allocation, is modestly faster than PF4 on average. As the figure shows, the average demand

satisfied by PF4w is only slightly larger than PF4 (about 54%).

In contrast, NCFlow (the solid dark blue line) finishes well within five minutes which

allows allocations to change along with the changing demands. We find that on average

NCFlow satisfies 75% of the demands; its smaller runtime more than makes up for sub-

optimality, allowing NCFlow to carry more flow than PF4 when demands change.

3.5.6 Handling Failures with NCFlow

Here, we evaluate the effect of link failures. As we note in §A.5, TEAVAR* did not finish

within several days on any of the topologies listed in Table 3.3 because when all possible

2-link failure scenarios are considered, the number of equations and variables in the op-

timization problem increase from O(N2) for MaxFlow to O(M2N2) for TEAVAR [27],

where N and M are the numbers of nodes and edges, respectively. Hence, we report re-

sults on the 12-node, 38-edge WAN topology from B4 [76]. We generate synthetic traffic

matrices as noted in §3.5.1. Using link failure probabilities from the open-source TEAVAR

implementation, we generate several hundred failure scenarios and, for each TM, we mea-

sure the flow carried by NCFlow and TEAVAR* before the fault, immediately after the

fault, and after recovery.

A key difference in fault recovery between NCFlow and TEAVAR* is that TEAVAR*

requires sources to rebalance the traffic splits when a failure happens; doing so takes about

one RTT on the WAN. Given a parameter β, TEAVAR* guarantees that there will be no

flow loss after the tunnels re-balance with a probability of 1−β. See §A.5 for more details.

We use β = 0.99, as recommended in [27]. NCFlow, on the other hand, recomputes flow



CHAPTER 3. NCFLOW 43

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.1  0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

C
D

F 
(o

v
e
r 

fa
u
lt

s)

Loss = 1 - (Flow carried by scheme/ Flow carried by PF4 when no fault)

NCFlow before fault
NCFlow after recompute

NCFlow after fault
TEAVAR* before fault

TEAVAR* after re-balance
TEAVAR* after fault

(a) CDFs of the flow loss before faults, immediately after faults and after recovery (B4 topology,
many traffic matrices and faults; see §3.5.6).

 0

 0.2

 0.4

 0.6

 0.8

 1

Fault happensFault happens
Tunnels rebalanceTunnels rebalance

NCFlow recomputesNCFlow recomputes

To
ta

l 
Fl

o
w

, 
re

la
ti

v
e
 t

o
 P

F
4

Time

NCFlow TEAVAR* TEAVAR

(b) Timelapse of when a fault occurs (B4 topology, Uniform traf-
fic matrix, β = 0.99)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10 15 20

C
D

F 
(o

v
e
r 

fa
u
lt

s)

Recompute Time (ms)

(c) NCFlow’s time to re-
compute after fault.

Figure 3.15: Comparing failure response of NCFlow with prior work.

allocations taking into account the links that have failed; doing so takes one execution of

NCFlow and some RTTs to change the traffic splits at switches; more details are in §A.4.
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Figure 3.15c shows that the recomputation time is well within one RTT on the WAN.

Figure 3.15b shows a timelapse of the flow carried on the network before the fault,

immediately after the fault, and after recovery. As the figure shows, TEAVAR* can have a

smaller loss and for a shorter duration; i.e., until sources rebalance traffic while NCFlow

can carry more flow before fault and after recovery; moreover, the fast solver time can

reduce the duration of loss.

Figure 3.15a shows CDFs over many faults and traffic matrices for NCFlow and TEAVAR*.

We record the flow loss at three stages: before the fault, immediately after the fault, and af-

ter recovery. As the figure shows, NCFlow’s ability to carry more flow before the fault and

after recovery more than compensates for the slightly larger loss it may accrue in between.

3.6 Discussion

Extending beyond MaxFlow: FeasibleFlow is a common constraint for many objectives

beyond MaxFlow (see Table 2.2). Since the algorithm in §3.3.1 and the heuristic in §3.3.2

guarantee feasibility, NCFlow can apply to objectives beyond MaxFlow; however, we be-

lieve that more work is needed to improve the solution quality for different objectives.

Optimality guarantee: In §A.8, we show that constraining by clusters and paths, as done

by NCFlow, does not necessarily reduce the flow allocation; that is, nearly the maximum

amount of flow can be carried while respecting clustering and path constraints. This is

promising because a better heuristic (than Figure 3.4) may allocate more flow without

losing the benefits of solving smaller per-cluster problems. Furthermore, although NCFlow

achieves sizable speedups by using simple clustering methods, the optimal cluster choice

is uncertain; we show examples in §A.7 to illustrate the challenges.

Recursive (or multiple levels of) clusters: For large topologies or when the largest cluster

has a disproportionate number of nodes, we can further divide a cluster into sub-clusters.

Doing so is an extension of the algorithm in Figure 3.4 where, in the iterative step, the

MaxClusterFlow problem at a cluster is replaced with a new instance of all of the steps

in Figure 3.4 along with the additional constraints that arise from the current level (e.g.,

NoMoreFlowThruCluster constraints). We leave further details to future work.
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NCFlow is agnostic to the underlying solver used for the problems in Figure 3.4 and can

benefit from future improvements to LP solvers and approximate methods [53, 59, 80].

Further use cases: Beyond serving as a drop-in replacement for today’s production WAN

traffic controllers, NCFlow can be used whenever fast and close-to-optimal solutions are

desirable such as: when allocating flow for future time-steps [77, 79] or to compare topol-

ogy changes [22, 37] or to accelerate the training of ML-based routing systems [135].

3.7 Related Work

NCFlow builds upon a few themes in prior work. We discuss and evaluate against some

prior works already. To recap:

• Some large enterprises use path-based global optimization problems similar to MaxFlow

to manage traffic on their WANs [71, 72, 76]. We saw in §3.5 that doing so does not

scale to the WAN topologies of today or the future, which consist of thousands of

sites.

• We saw that approximate algorithms for multi-commodity max flow, such as [53],

require a large number of switch forwarding entries since they can send flow along

any edge. Also, NCFlow allocates more flow and is faster compared to path-based

versions of these algorithms.

• Probabilistic fault protection schemes such as TEAVAR [27] take an infeasibly long

time to run on large topologies when considering multiple link failures; they also

allocate less flow to reserve capacity to deal with possible failures. Other oblivious

techniques [17, 18, 27, 86, 96, 139] have a similar trade-off. Quickly recomputing

using NCFlow trades off slightly more loss after a fault to carry much more traffic

before the fault and after recomputation.

Hence, we believe that NCFlow is better suited to enterprise WANs, which target very

high link utilization and have traffic that is elastic to short-term loss (e.g., scavenger-class

traffic, such as replicating large datasets [71, 76, 96]). Here, we discuss other related work.
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TE on WANs: Typically, a WAN node is not a single switch, but rather a group of switches

connected in a specific way such as a full mesh. Similarly, a WAN edge is a systematic

collection of links between many switches. [72] discusses how to hide the intra-node con-

nectivity from the global TE solution. NCFlow complements this technique; it can use a

similar intra-node scheme and can support WANs that are 10× larger than were consid-

ered in [72]. The specific contraction used by NCFlow—node clusters with large capacity

and/or demand between themselves—also differs from the contractions used in route plan-

ning [1, 11, 23]. Some BGP-based TE schemes [41, 125, 143], which address how best to

move traffic between different (BGP) domains, are also complementary to NCFlow which

considers the WAN of a single enterprise (domain). Other TE schemes use different proto-

cols, such as OSPF, or work over longer timescales (e.g., hours to days) [56, 77, 89, 101].

Multi-Commodity Flow Solutions: Both the edge- and path-based LP formulations are

well-studied [24,140]. Some prior work considers the case of a single commodity, i.e., one

source and target, and does not directly extend to the case of multiple commodities [70,

94, 113]. The best-known approximate algorithms for multi-commodity flow problems

incrementally allocate flow on the shortest path and increase the length of all edges on that

path [25, 53, 59, 80]. For the problem sizes considered here, LP solvers such as Gurobi are

faster in practice, perhaps because they take larger steps towards the optimal allocation.

There is also prior work that customizes the LP solver to improve performance on flow

problems [38,97]. NCFlow is agnostic to the solver used; that is, NCFlow can use any fast

solver for the sub-problems in Figure 3.4.

Decompositions: Using standard decomposition techniques for large optimization prob-

lems, such as Dantzig-Wolfe and Benders [24,29], for multi-commodity flow problems has

led to inconclusive results [61, 111]; i.e., not consistently faster than MaxFlow. NCFlow

can be thought of as a problem-specific decomposition that leverages the observation that

both capacity and demands are concentrated in today’s WANs.
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3.8 Summary

In this chapter, we presented NCFlow, a fast and practical solution for traffic engineering

on large WANs. We use geographic partitioning and leverage the concentrated nature of

demands and topologies to divide nodes into clusters and solve sub-problems per cluster

and on the aggregated graph. Our heuristics guarantee feasibility and empirically achieve

close-to-optimal flow allocations. By reusing pathlets and splitting rules across demands,

we require fewer forwarding entries in switches. Empirically, on topologies that are over

10× larger than were considered in prior work and many traffic matrices, NCFlow is 8.2×
faster than the state of the art, while allocating 98.8% of the total flow and using 6× fewer

forwarding entries in the median case. We demonstrate that NCFlow offers sizable benefits

when tracking changing demands and reacting to failures. As enterprise WANs continue

to grow, we believe techniques such as NCFlow can enable improved traffic orchestration

and higher utilization.
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POP

4.1 Introduction

In this chapter, we introduce POP, our second technique for traffic engineering based on

commodity-based partitioning. Like NCFlow, POP is faster than the state of the art but only

sacrifices a small amount of flow. Additionally, POP supports multiple TE objectives, such

as maximum total flow, maximum concurrent flow, and min-max link utilization. Because

of its performance and generality, we believe that, just like NCFlow, POP is a suitable

choice for traffic engineering on large-scale WANs.

To understand the motivation behind POP, we first examine the underlying computa-

tion involved in state-of-the-art TE today. As we discussed in Chapter 2, the centralized

approach requires solving a mathematical optimization problem, which is typically a lin-

ear program. (Refer to Table 2.2 for examples.) Unfortunately, solving these mathematical

programs can be computationally expensive: the worst-case complexity for linear programs

is approximately O(n2.373) [44, 91], where n is the number of problem variables. Even

though LPs can sometimes be solved faster, this depends on the problem structure and the

numerical solver used. For large-scale WANs, these LPs can have millions of variables

(e.g., k variables for every commodity, where k is the number of paths per commodity) and

even more constraints. Naturally, this leads to long solution times, which we demonstrated

in Figure 1.2. Heuristics offer an alternative, but they often make assumptions too strong

for the problems at hand and produce sub-optimal results, as we discussed in §2.3.

48
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Figure 4.1: Overview of POP’s commodity-based partitioning strategy for l = 2 sub-problems
on a fictitious topology and traffic matrix. The commodities are assigned randomly to one of the
sub-problems; the capacities are split evenly.

NCFlow addressed this problem by partitioning the WAN into geographic clusters; be-

cause each cluster could now be solved independently, the total number of variables across

the resultant set of LPs paled in comparison to the original LP. But the downside of ge-

ographic partitioning is that it created a reconciliation problem: disagreements between

two or more clusters on inter-cluster commodities could end up with 0 allocated flow, a

worst-case scenario that can occur when the traffic matrix overwhelms the WAN topology

and links become oversubscribed. (We discuss how this situation can occur in more detail

in Chapter 5.)

Instead, we wish to devise an alternative strategy that still partitions the WAN and traffic

matrix but preserves the underlying topological structure: rather than omit or bundle links

due to clustering, we wish to keep the existing topology in place with our partitioning. We

also note that the TE problem has other exploitable properties: although the number of

commodities and links are both large, each commodity typically requests a small fraction

of the total available capacity, and the link capacities are fungible or substitutable—a com-

modity can make similar progress using different links, so long as the links belong to the

commodity’s set of available paths.

Because of these characteristics, we deem the traffic engineering LP to be a granular

allocation problem, which we will define in Chapter 4. For such problems, we propose

POP, which stands for Partitioned Optimization Problems. To apply POP, we divide the

commodities randomly among l identical copies of the given WAN topology, each with
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a subset of the commodities. The randomized strategy is effective here because of the

fungible nature of the problem. Additionally, the link capacities are divided evenly among

the l sub-problems, so that every link is present across every copy of the topology. We call

this approach commodity-based partitioning; Figure 4.1 shows an example of how this can

be applied on a simple WAN and traffic matrix.

After partitioning, each sub-problem has fewer equations and variables, leading to a

super-linear runtime speedup, and we can also execute the sub-problems in parallel. The

overall flow allocation is a simple sum of the allocations from the individual sub-problems.

Our results show that randomly dividing the commodities and evenly dividing the link ca-

pacities among sub-problems works well when commodities are numerous and individually

use only a small fraction of the available capacity in the WAN. Empirically, we show that

POP’s allocations are nearly optimal on several optimization problems, including using

real-world inputs.

A supplemental benefit of POP’s simplicity is that we can reuse the original linear

program formulation on each individual sub-problem; unlike NCFlow, we do not have to

modify the LP, or design new LPs in its stead. This means that we can support multiple TE

objectives—not only maximum total flow, but also maximum concurrent flow and min-max

link utilization—all with just a few lines of code.

In the real world, not all traffic matrices precisely fit the definition of granularity that we

presented above. For example, a traffic matrix could have “large” commodities with sub-

stantial bandwidth demand. Fortunately, in these cases, we can transform the problem into

a granular one using commodity splitting: the “large” commodities can be split into multi-

ple virtual commodities who each receive partial allocations from multiple sub-problems.

Since the number of “large” commodities is small, by definition, POP’s sub-problems re-

main small and still achieve a sizable runtime speedup.

We found that POP is effective on a wide range of topologies and traffic matrices.

Using the same evaluation framework previously applied to NCFlow, we observed that

POP achieves empirical runtime improvements on the maximum total flow objective of up

to 18× in the median case compared to the original problem formulation for maximum

total flow, all while staying within 0.1% of optimality. Additionally, POP achieved a 56×
speedup with a 1.5% reduction in optimality on the min-max link utilization objective, and
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a 2, 500× speedup with a 5% reduction in optimality on the maximum concurrent flow

objective. Lastly, we found commodity splitting to be a useful optimization when applying

POP to “skewed” traffic matrices. Like NCFlow, our implementation is available at the

same URL: https://github.com/stanford-futuredata/pop-ncflow.

4.2 Partitioned Optimization Problems for TE

When a traffic engineering problem is granular, we can split it into sub-problems, where

each sub-problem has a subset of the commodities from the original problem. Importantly,

all links are preserved in each sub-problem; otherwise, this could potentially create scenar-

ios, where a sub-problem attempts to allocate flow on a path, but the link is missing. We

leverage the large number of commodities to randomly partition them problems; this proce-

dure yields high-quality flow allocations in expectation due to the Law of Large Numbers.

We call this technique Partitioned Optimization Problems (or POP for short). In the rest of

this section, we describe the intuition, procedure, and benefits of POP.

4.2.1 Intuition

Optimization problems for large-scale traffic engineering take a long time to solve in part

because they have many variables. For example, consider a WAN that has N nodes and

M links. Assuming that every site has traffic to send to every other site (i.e., the traffic

matrix is relatively full), this gives us N2 commodities. If we choose to select flows from k

different paths on each commodity, then we have a matrix of N2k variables. Additionally,

we would have N2 + M constraint equations—one for each commodity, and one for each

link. For 104 nodes and 104 links, the problem has on the order of 108 variables and 108

constraints. Contemporary solvers often take hours to solve such problems, although the

exact runtime depends on problem properties such as sparsity [136].

We can achieve much faster allocation computation times by decomposing the prob-

lem; for example, the problem of allocating 103 commodities on 103 links (100× fewer

variables) is much more tractable. This procedure of breaking up the larger problem into

sub-problems reduces the search space explored by the solver, since interactions between

https://github.com/stanford-futuredata/pop-ncflow
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all combinations of commodities are no longer considered. Instead, only combinations

of subsets of commodities are considered, which reduces runtime but also can reduce the

quality of the allocation. In light of this, the interaction between commodities needs to

be considered carefully to take into account the many global constraints in the original

problem, as well as the objective. Additionally, the link capacities need to be distributed

appropriately, so that a sub-problem has enough capacity to service its assigned commodi-

ties. We find that on large traffic matrices, splitting commodities randomly and dividing

link capacities equally among the sub-problems reduces the search space of feasible so-

lutions that needs to be considered by solvers, while still ensuring that some high-quality

feasible points are in the explored search space. This is the main intuition that allows POP

to be effective, returning flow allocations of similar quality as the original formulation but

faster.

4.2.2 Procedure for POP

The first step of POP is to partition the traffic engineering problem into smaller sub-

problems. The type of partitioning allowed is dependent on the objective and constraints

of the allocation problem, and has implications on the runtime speedups and quality of

the returned allocation. We can then re-use the map-reduce API [48, 145] (or divide-and-

conquer): each of these sub-problems can be solved in parallel (map step) using the same

exact LP as the original problem, and then allocations from the sub-problems can be rec-

onciled into a larger allocation for the entire problem (reduce step) through a simple sum-

mation. We show pseudocode for this in Algorithm 1.

The partitioning step affects the runtime, the reconciliation complexity, and ultimately

the quality of the final allocation. For traffic engineering, we use a straightforward approach

and divide the commodities randomly into the sub-problems. We find that this partitioning

scheme is effective even when the traffic matrix does not exhibit any skew (e.g., the com-

modities’ demands are relatively uniform). With random partitioning, the reduce step is

cheap, which was not the case in NCFlow: there, a more complex reconciliation step was

involved to combine the flow allocations from the various sub-problems.
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Algorithm 1 POP Procedure.

Input: Commodities D = [x1, x2, . . . , xK ], links E = [e1, e2, . . . , eM ], number of sub-
problems l, (optional) ratio of extra virtual commodities allowed t.
Return: Allocation for all K commodities, f .

// Optional: make the problem granular if it is not already.
D′ = SPLIT COMMODITIES(D, t)

// This is the partition step.
[D′1,D′2, . . . ,D′l], [E ′1, E ′2, . . . , E ′l ] = partition(D′, E , l)
// For each edge e ∈ E ′j , the edge’s capacity is now ce/l.

// This is the map step, can be performed in parallel.
for i in range(l) do
fi = MaxFlow(D′i, E ′i)
// This could be a different objective, such as MaxConcurrentFlow.

end for

// This is the reduce step; flow allocations fi are summed up.
f =

∑
i fi

4.2.3 Transformations to Granularize TE Problems

In some cases, it might not be possible to either return a flow allocation that is feasible or

high quality by merely assigning each commodity to each sub-problem at random when

using the POP procedure. This is notably the case when we have a skewed traffic matrix:

when a small number of commodities have large demands that dominate the rest [12].

This is common for certain traffic patterns, such as the Poisson traffic model that we

saw in §3.5. If several of these “heavy” commodities were assigned to the same sub-

problem, this would immediately lead to sub-optimal total flow; the link capacities assigned

to that some problem will not be sufficient. To transform these into granular problems, we

propose an algorithm called commodity splitting to split these commodities across several

sub-problems.

For simplicity when defining the algorithm, we also define the concept of a splitting at-

tribute that we will use to determine how to create these virtual commodities and distribute

them across several sub-problems. When splitting, it is important that the commodity’s
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Figure 4.2: Commodity splitting, where we granularize a traffic matrix with skewed demands by
splitting the largest commodities until a pre-determined threshold t is met.

other attributes—its source, its target, and its paths—are copied over without change. In

our setting, this splitting attribute is the commodity’s traffic demand. We then construct a

priority queue (heap) of the corresponding attribute values for all clients. Given a threshold

t (t is typically a number less than 1) on the maximum number of extra virtual commodities

allowed, we pop and split commodities off the queue, and then push the new commodities

back into the queue. Each split reduces the value of the demand of the popped commodity

by a factor of 2. Importantly, each split maintains the feasibility invariant: the coalesced

allocation across virtual commodities will still be feasible (since the total sum of the split

demands remains the same). By reducing the value of the demand, commodity splitting

breaks down large commodities into a collection of smaller commodities with equivalent

total demand. The runtime of this algorithm is O(K logK), where K is the number of

commodities, which is cheap compared to the runtime of computing a flow allocation in

each sub-problem. Algorithm 2 shows pseudocode, and the procedure is illustrated in Fig-

ure 4.2. Empirically, we found that most TE problems are granular enough for POP to work

well with 0 split commodities. Moreover, commodity splitting does not adversely impact

allocation quality, but it can increase runtime. The hardest problems in our experiments

required t = 0.75. The optimal value of t is problem-specific, and it is possible that users

may have to dynamically adapt t to get the best performance from POP. However, in all
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Algorithm 2 Commodity Splitting Algorithm.

Input: Inputs D = [x1, x2, . . . , xK ], ratio of extra virtual commodities t allowed.
Return: Mapping from real to virtual clients {xi → [x′j]}.
Initialize queue← MAX HEAP(), mapping← {}.
// Enqueue every commodity based on its demand
For all i ∈ {1, 2, . . . , K}, queue.PUSH(xi.demand, xi).

while len(queue) ≤ (1 + t) · n do
xmax = queue.POP()
Split xmax by demand into two copies x1max and x2max (x1max.demand, x2max.demand =
xmax.demand/2).

UPDATE MAPPING(xmax, [x
1
max, x

2
max])

queue.PUSH(x1max.demand, x1max), queue.PUSH(x2max.demand, x2max)
end while

of the considered production use-cases in our experiments, we found that small values of t

that worked well for historical problem instances continue to work well on future problem

instances.

The resulting allocation problem after these transformation steps can be granular; if

so, we can use POP to solve it. After the partition step, we obtain allocations for each

virtual variable in the problem. Allocations assigned to virtual variables corresponding to

a single commodity need to be summed to obtain the final allocation. We show how this

can be incorporated into the full POP procedure in Algorithm 1.

4.2.4 Advantages of POP

Our simple approach provides us with several advantages. To begin with, because POP

reuses the underlying problem formulation, it can be applied to a broad class of TE objectives—

not only maximum total flow, but also maximum concurrent flow, for example:
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MaxConcurrentFlow(V , E ,D,P) ,maxα (4.1)

s.t. dkα ≤ fk,∀k ∈ D
f ∈ FeasibleFlow(V , E ,D,P)

Similarly, we can apply POP to min-max link utilization:

MinMaxLinkUtil(V , E ,D,P) ,min z (4.2)

s.t.
∑

∀k,p∈Pk,e∈p

fpk ≤ z,∀e ∈ E

f ∈ FeasibleFlow(V , E ,D,P)

Here, we see that POP’s flexibility is analogous to the linear program itself: the constraints

and the underlying problem definition do not have to change—only the objective function

changes. By contrast, these objectives have traditionally required different approximation

algorithms [53, 80].

Another advantage of POP is its composability: it can be used in an outer loop as a

simplifying step for a downstream heuristic or approximation algorithm. For example, one

might use POP to initially partition the TE problem, and then use Fleischer’s algorithm

to solve the individual sub-problems. POP could also be combined with different path

selection algorithms. Lastly, like NCFlow, POP exposes a tunable knob—the number of

sub-problems l—that lets the user explicitly trade-off between flow allocation quality and

runtime.

4.2.5 When Does POP not Apply to TE?

Note that POP is not applicable for every variant of the TE problem. For example, suppose

our problem included hard constraints like “flows A and B should/should not use the same

link.” This would not align well with randomly partitioning the commodities (e.g., random

partitioning could drop flows A and B into different sub-problems when flows A and B
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Topology # Nodes # Edges

Kdl 754 1790
Cogentco 197 486
UsCarrier 158 378
Colt 153 354
GtsCe 149 386
TataNld 145 372
DialtelecomCz 138 302
Deltacom 113 322

Table 4.1: The WAN topologies used to benchmark POP. Like Table 3.3, the networks in blue were
obtained from the Internet Topology Zoo [82] at http://www.topology-zoo.org/.

need to use the same link); smarter partitioning algorithms can mitigate this by considering

affinity between flows, but supporting these is left to future work.

4.3 Evaluation

In this section, we evaluate POP against NCFlow and the state of the art in TE. We aim to

answer the following questions:

1. What is the effect of POP on flow allocation quality and execution time for traffic

engineering? How does it compare to relevant heuristics?

2. Does POP work across a range of objective functions?

3. How effective are POP’s commodity splitting optimization in generating high-quality

flows?

4. How does random partitioning compare to other more sophisticated problem parti-

tioning strategies?

We evaluate POP using the same set of traffic matrices as NCFlow, but on a subset of

the topologies from Table 3.3. (See Table 4.1.) Unlike NCFlow, our results span three

different TE objectives: maximize total flow, maximize concurrent flow, and min-max link

utilization.

http://www.topology-zoo.org/maps/Kdl.jpg
http://www.topology-zoo.org/maps/Cogentco.jpg
http://www.topology-zoo.org/maps/UsCarrier.jpg
http://www.topology-zoo.org/maps/Colt.jpg
http://www.topology-zoo.org/maps/GtsCe.jpg
http://www.topology-zoo.org/maps/TataNld.jpg
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Figure 4.3: CDFs comparing POP vs NCFlow with state-of-the-art methods. Like NCFlow, POP
offers a substantial runtime speedup, with only a modest decrease in total flow.

We first present end-to-end experiments, then present some micro-benchmarks that ex-

amine the impact of various algorithmic contributions in POP.

4.3.1 Comparing POP to the State of the Art

We first demonstrate POP’s end-to-end effectiveness. In our experiments, the total number

of threads given to solvers for our baselines and POP are the same. If l sub-problems are

solved in parallel when using POP, each sub-problem uses 1/l of the number of threads.

Unless otherwise noted, we benchmark POP with l = 16 sub-problems.
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We tested POP on the topologies shown in Table 4.1 from the Topology Zoo reposi-

tory [82]. For each topology, we benchmarked POP on the same set of synthetic traffic

matrices previously seen in §3.5. As previously noted, these traffic matrices were gener-

ated using several traffic models: Gravity [18,123], Uniform, Bimodal [18], and Poisson.

Because Poisson represents a skewed workload, where a small percentage of commodities

dominate the network demand. For this workload, we use the commodity splitting algo-

rithm from §4.2.3 to improve flow quality. We do not use commodity splitting for the other

traffic matrices.

Maximum Total Flow. Figures 4.3a and 4.3b show cumulative density functions (CDFs)

of the relative total flow and speedup ratio for POP and NCFlow and several baselines.

These two figures are extensions of Figure 3.10, with the exception benchmark on the 8

topologies in Table 4.1.

We see that POP, the densely dashed orange lines in both figures, almost always allo-

cates at least 90% of PF4’s total flow, while achieving large speedups. In the median case,

POP achieves 99.9% of the flow and is over 18× faster than PF4. By contrast, NCFlow

achieves 99.0% of the flow, with a median speedup of 9.8× on the same cohort of traffic

matrices. However, NCFlow seems to outperform POP at the tail of the speedup CDF: its

maximum speedup is 1906×, while POP’s is 98×.

Figure 4.4 shows the trade-off between runtime and allocated flow on the Kentucky

Data Link network (Kdl in Table 4.1), which has 754 nodes and 1790 edges spanning

the Eastern half of continental USA. We instantiated over 5 × 105 demands, with 4 paths

per commodity in the network. The flow allocated by POP is within 1.5% of optimal

when using 64 sub-problems, yet 100× faster than the original problem. Again, POP also

compares favorably to CSPF [58] and NCFlow.

Figure 4.5 shows the improvement in allocation quality and runtime compared to the

original LP formulation presented in §6.4 with POP using 16 sub-problems. Each point in

the scatterplot represents a different topology and traffic matrix. We see larger speedups

for the larger Kdl topology. We used commodity splitting with a threshold (t) of 0.75

for the Poisson traffic matrices (where some commodities have large demands), and no

commodity splitting for the other traffic models, which were granular out of the box.
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Figure 4.4: Results for the Maximum Total Flow problem for traffic engineering for a single topol-
ogy and traffic matrix. The scatterplot shows runtimes and total allocated flow for the formulation
shown in Equation 2.2 (PF4) and its POP variants, as well as CSPF and NCFlow.
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Figure 4.5: Results for the Maximum Total Flow problem for traffic engineering for multiple topolo-
gies and traffic matrices. The scatterplot shows runtimes and allocated total flow for POP-16 across
275 experiments, separated by large (Kdl) and small (non-Kdl) topologies.
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Figure 4.6: Allocated flow and speedup relative to original problem on a 5-day sequence of real-
world traffic matrices from a private WAN with 100s of nodes and edges. With commodity splitting
(t = 0.25), POP allocates >99% of the total flow with a 12.5× median speedup.



CHAPTER 4. POP 62

101 102 103 104

Runtime (seconds)

0.00

0.25

0.50

0.75

1.00
M

in
im

um
fr

ac
tio

na
l f

lo
w PF4POP-4POP-16POP-64

Better

Figure 4.7: Results for the Maximum Concurrent Flow problem for traffic engineering for a single
topology and traffic matrix. The scatterplot shows runtimes and minimum fractional flow for the
formulation shown in Equation 4.1 (PF4) and its POP variants.

We also ran experiments on the same set of real-world traffic matrices we saw in Fig-

ure 3.13. Figure 4.6 plots the moving average (over 5 windows) of the total flow and

speedup relative to the original problem for NCFlow, POP with no commodity splitting,

and POP with t = 0.25 commodity splitting. Without commodity splitting, POP achieves

significant speedups (15× in the median case) compared to the original problem, but allo-

cates 89.1% of the total flow in the median case. However, POP with commodity splitting

nearly matches the total flow allocated in the original problem (99.9% in the median case),

while still achieving a median 12.5× speedup.

Maximum Concurrent Flow. Similarly, we benchmarked POP on the Maximum Con-

current Flow objective using the same set of topologies and traffic matrices. Figure 4.7

shows the trade-off between runtime and minimum fractional flow on the Kdl topology,

using the same traffic matrix in Figure 4.4. The objective value realized by POP is again

within 1.5% of optimal when using 64 sub-problems, yet 1000× faster than the original

problem. As before, we use commodity splitting with a threshold of 75% for the Poisson

traffic matrices, and no commodity splitting for the other traffic matrices.

Min-Max Link Utilization. Lastly, we benchmarked POP on the Min-Max Link Utiliza-

tion objective using the same set of topologies and traffic matrices. Figure 4.8 shows the
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Figure 4.8: Results for the Min-Max Link Utilization problem for a single topology and traffic
matrix. The scatterplot shows runtimes and maximum link utilization for the formulation shown
in Equation 4.2 (PF4) and its POP variants.

trade-off between runtime and maximum link utilization again on the Kdl topology, using

the same traffic matrix in Figure 4.4. The objective value realized by POP is again within

1.5% of optimal when using 64 sub-problems, yet 56× faster than the original problem.

As before, we use commodity splitting with a threshold of 75% for the Poisson traffic

matrices, and no commodity splitting for the other traffic matrices.

4.3.2 Effectiveness of Commodity Splitting

Figure 4.9 shows the effect of commodity splitting on total flow and runtime when using

POP with 16 sub-problems, on a traffic engineering problem with “large” commodities

(Poisson traffic model) as well as a more typical set of commodities (Gravity traffic model)

and a Maximum Total Flow objective. The figure shows separate cumulative distributions

of approximately 100 different experiments for each traffic model and commodity splitting

threshold (t in Algorithm 3).

We see that with skewed traffic (Poisson traffic model) and no commodity splitting,

the total flow is typically far from optimal. Commodity splitting drastically increases the

median relative total flow from 0.2 to near 1.0 for these problems, at the cost of some

runtime overhead (due to an increase in the number of variables). In contrast, the problems

with Gravity traffic get near-optimal allocated flow without commodity splitting.
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Figure 4.9: Comparison of POP-16 relative to original problem for the Maximum Total Flow ob-
jective, across different levels of additional split commodities (0× to 1×) and traffic matrices from
two traffic models: Gravity and Poisson (which is skewed).
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Figure 4.10: Performance comparison of various partitioning algorithms for the Maximum Total
Flow objective in traffic engineering. Power-of-2 partitioning is nearly identical to random parti-
tioning.

4.3.3 Alternatives to Random Partitioning

We implemented several algorithms to partition commodities into sub-problems, and com-

pared them to random partitioning. Among these is a power-of-2 partitioning algorithm that

tries to assign each commodity sequentially to one of two randomly chosen sub-problems

using “distributional similarity” to the original problem as the metric. We also implement a

skewed partitioning algorithm that deliberately creates skew among sub-problems to show

the impact of bad partitions. Figure 4.10 shows the impact of these partitioning algorithms

on the quality of allocation returned by POP on a traffic engineering problem. We see that

random partitioning performs about as well as the more sophisticated power-of-2 partition-

ing, while skewed partitions have poor performance (skewed causes link congestion around

certain nodes in the WAN).

4.4 Related Work and Discussion

In this section, we discuss other techniques for traffic engineering that share lineage with

POP.
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Randomized Algorithms in Networking. Randomized approaches have seen success in

other important networking tasks as well. For example, in data center networking [129],

random graph topologies work surprisingly well compared to commonly-used structured

topologies such as FAT-trees. In load-balancing algorithms [99], assigning jobs to the

least-loaded of just two randomly selected servers in a cluster can drastically reduce the

probability of overloading a server.

Additionally, Valiant Load-Balancing (VLB) [146] uses a simple randomized approach

for routing traffic: the source node samples an intermediate node to forward traffic to (e.g.,

using CSPF or ECMP), and the intermediate node then forwards the traffic to the correct

destination. VLB has been helpful in mitigating link failures, particularly in data center

networks [66]. However, it is not used heavily for traffic engineering in large-scale WANs

today.

So called “oblivious” or semi-oblivious routing schemes have become popular in the

traffic engineering community in the last decade, which also leverage randomization. Al-

gorithms such as SMORE [86] use Randomized Routing Trees (RRTs), a technique devel-

oped by Räcke [118]. These RRTs can be used to improve path selection for commodities,

since they produce paths that are low-stretch, diverse, and naturally load-balanced. This

differs from POP, which is agnostic to the path selection algorithm.

Approximation Algorithms for TE. FPTAS algorithms [9] return results with a guar-

anteed approximation ratio and run in polynomial time over this approximation factor.

Proving an approximation ratio with POP is hard since we apply POP to many different

problems with various structures, as opposed to designing a problem-specific approxima-

tion algorithm. Many such algorithms exist for various traffic engineering objectives [25,

53, 59, 80]. We benchmark against one of these algorithms—Fleischer’s [53]—in our eval-

uation and show that POP achieves a better trade-off between optimality and efficiency.

4.5 Summary

In this section, we showed how commodity-based partitioning can be exploited to effi-

ciently solve traffic engineering problems. Our technique, POP, achieves strong results
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by randomly partitioning the global TE problem into smaller, independent sub-problems,

which reduces the problem’s complexity and allows us to find a feasible flow allocation in

an embarrassingly parallel fashion. Furthermore, POP retains the global problem’s opti-

mization objective and constraints, which makes it reusable across multiple TE objectives.

We found that POP achieved runtime improvements of 18× in the median case with small

optimality gap, and it also outperformed greedy ad-hoc heuristics and other approximation

algorithms. We hope this work motivates others to consider POP for their large-scale traffic

engineering needs.



Chapter 5

NCFlow vs POP

In this chapter, we compare NCFlow and POP head to head and enumerate their relative

strengths and weaknesses. So far, we have discussed each of these algorithms in isola-

tion, and we have also seen experimental results that directly compare POP and NCFlow.

However, we have not yet elucidated how these results were achieved by both algorithms.

More specifically, we have not yet answered the question: when does NCFlow outperform

POP—on what types of topologies and/or traffic matrices? Similarly, when does POP out-

perform NCFlow? By answering these questions, we can deepen our understanding of

these algorithms and develop an appreciation for when to use one versus the other.

First, we examine two small toy examples—one that demonstrates POP’s shortcom-

ings, and one that demonstrates NCFlow’s. We provide these examples to help the reader

developer better intuition for the matter at hand. Then, we build off of these examples and

discuss some experimental results that clarify and solidify the key characteristics that deter-

mine NCFlow’s and POP’s relative performances. Finally, we summarize the differences

between the two algorithms more broadly in our concluding section.

5.1 When Does POP Underperform?

To better understand POP’s weaknesses, we construct a simple topology and traffic matrix

in Figure 5.1a. A detailed walkthrough of this scenario will illustrate how POP can behave

sub-optimally for certain inputs.

68
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(a) Failure case for POP. The optimal maximum to-
tal flow is 4C, which NCFlow will match. POP,
however, will allocate 2.03C in expectation.

𝐶
0

Green commodity 
gets all flow

Yellow commodity 
gets all flow 

(b) Failure case for NCFlow. The optimal
maximum total flow is C, and POP will allo-
cate 0.93C in expectation. In the worst case,
NCFlow will allocate 0 flow.

Figure 5.1: Failure scenarios for POP and NCFlow. For each scenario, assume all commodities
have the same demand d ≥ C.

In this example, commodities V , W , X , Y , and Z all have the same demand d ≥ C,

whereC is the capacity on each link. By inspection, we can conclude that, for the maximum

total flow objective, the optimal allocation is 4C: V , W , X , and Y should allocate C flow,

and Z should get 0.

If we apply NCFlow on this problem, with a simple partitioning of two clusters that sep-

arate commodities V and W into one cluster, commodity Y in another, and commodities

X and Z the remaining inter-cluster commodities, then we can also see through a sim-

ple simulation of NCFlow’s algorithm that it will also arrive at 4C, matching the optimal

allocation.

Now how does POP perform, with l = 2 sub-problems1 on this toy example? Without

loss of generality, let’s assume that commodities V and W are assigned to the first sub-

problem, and commoditiesX , Y , and Z are assigned to the second sub-problem. Both sub-

problems now have capacities C/2 across all links. In the first sub-problem, commodities

V and W will saturate their links, giving us a total flow of C/2 + C/2 = C. Similarly in

the second sub-problem, commodities X and Y saturate their links, also achieving a total

flow of C. (Z is given 0 flow.) The total flow, then, across all sub-problems is 2C, half of

1Assume that no commodity splitting is applied.
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the optimal allocation.2

When we divide the link capacities across the two sub-problems, we restrict the capacity

budget for the sub-problem’s assigned commodities—we are effectively forcing the first

sub-problem’s commodities to share the links with the second sub-problem’s. But, in this

situation, the optimal flow is achieved when one commodity takes the entire link, as we

outlined earlier.

5.2 When Does NCFlow Underperform?

Let us now examine NCFlow to better comprehend its weaknesses. Similar to our analysis

for POP, we devise a small topology and traffic matrix in Figure 5.1b. Once again, we walk

through this example step by step to see how NCFlow can arrive sub-optimal allocations.

In this small “dumbbell” topology, there are four commodities—yellow, green, blue,

and orange—that must all pass through a single link with capacity C. As was the case

in the previous section, all four commodities have demand d ≥ C. However, the yellow

commodity must first pass through an additional link, which has capacity 0. (All other

unmarked links have infinite capacity.) Effectively, the yellow commodity must get 0 flow

no matter what.

Because of the bottleneck link with capacity C, the optimal flow allocation is clearly C

as well: any commodity (other than yellow) can take the link’s capacity, or it can be shared

evenly between the green, blue, and orange. Because the link can be shared, this bodes

well for POP. In fact, if we apply POP with l = 2 on this problem, we can see that it should

match the optimal result C with high probability.3

How will NCFlow perform on this problem? Suppose we cluster the topology based

on the dashed line drawn in Figure 5.1b: one cluster on the left, and another on the right.

The left cluster will, of course, not allocate any flow to the yellow commodity in Max-

ClusterFlow. However, the right cluster certainly could; if that were to occur, then, after
2Other possible partitionings will also yield 2C, except for one: {V,W,X, Y } and {Z}, which would

allocate 2.5C. This partitioning can occur with probability 1/15, which means that, in expectation, POP will
allocate 2.03C.

3The only exception is if the random partitioning turns out to be {green,blue, orange} and {yellow};
in that situation, the second sub-problem would allocate 0 flow, and the total flow would be C/2. So, in
expectation, POP will allocate 0.93C.



CHAPTER 5. NCFLOW VS POP 71

SrcTargetMax is executed, NCFlow would end up allocating 0 flow.

Note that this does not always happen: it is also certainly possible that, under NCFlow,

the two clusters end up agree on which commodity (or commodities) get assigned the

flows. But, without some canonical ordering (which is non-trivial to design), this problem

can arise with high probability. Because of the intra-cluster bottleneck on an inter-cluster

demand, NCFlow now has the potential to create a disagreement that would never occur in

the original formulation of the problem.

To conclude, we summarize the key difference between NCFlow and POP: for certain

topologies and traffic matrices, the optimal approach is to let a subset of the commodities

take all the capacity. In those situations, NCFlow will likely outperform POP. However,

those circumstances do not always hold true; in fact, the exact opposite may be in effect:

to achieve optimality, all of the commodities must share the link capacities amongst one

another. Under those conditions, we expect POP to outperform NCFlow.

5.3 Experimental Results

We have illustrated how POP and NCFlow can both under-allocate flows in certain sce-

narios. However the two examples we have given are both small topologies and traffic

matrices; a skeptic could argue that these are fairly contrived and do not necessarily cap-

ture how both of these algorithms will behave at scale.

The skeptic’s critique has merit. To remedy this, we conducted an experiment that cap-

tures the broader characteristics of each scenario in situ—i.e., we recreate these scenarios

within the topologies used in our evaluation of NCFlow and POP from section 4.3.

For each topology, we generated two ‘imbalanced” traffic matrices: one that is heavily

skewed to commodities whose sources and targets are close to one another in the topology,

and another that is skewed to commodities who sources and targets are far apart from one

another. We do this programmatically using the following procedure:

1. Using the computed path sets for the topology, we calculate the average hop length

for each commodity’s set of paths and sort the commodities based on this metric.
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Topology
Heavy demand on

“near” commodities
Heavy demand on
“far” communities

NCFlow POP NCFlow POP

Kdl 0.99 0.59 0.57 0.90
Cogentco 0.99 0.60 0.67 0.92
UsCarrier 0.99 0.59 0.75 0.93

Colt 1.0 0.61 0.80 0.94
GtsCe 0.99 0.61 0.62 0.93

TataNld 0.99 0.60 0.80 0.89
DialtelecomCz 1.0 0.58 0.88 0.72

Deltacom 0.98 0.62 0.70 0.93

Table 5.1: NCFlow vs POP on “imbalanced” traffic matrices for topologies from Table 4.1. We
show the relative total flow compared to PF4 for each technique; the bolded numbers signify which
one outperformed the other (higher is better). NCFlow is better than POP when nearly all demand
in the traffic matrix is assigned to commodities that are near one another in the topology, while the
reverse is true when the demand is concentrated amongst commodities that are far apart from one
another.

2. After sorting, we select the top/bottom 50% of commodities and assign them a de-

mand equal to the maximum capacity of any link in the topology. The remaining

50% of commodities are given demand 0, which gives us a complete traffic matrix.

Using this procedure, we can generate two types of traffic matrices: one where where the

demands are “far apart” in the topology (the top 50%), and one where the demands are

“near” one another (the bottom 50%). In both cases, the topology will be heavily over-

subscribed with traffic, since, by definition, each demand could saturate any link in the

topology. The difference in each traffic matrix comes down to where the saturation will

occur. More specifically, our setup should lead to the following outcomes:

• The “near” traffic matrix will ideally capture POP’s failure scenario: many bottle-

necked single-path flows. By contrast, NCFlow will thrive.

• The “far apart” traffic matrix will capture NCFlow’s failure scenario: many inter-

cluster demands with many intra-cluster bottlenecks. POP, on the other hand, will
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NCFlow POP

Geographic partitioning Commodity-based partitioning

Replaces original LP with a new set of LPs
(see Figure 3.4)

Reuses original LP, but discards variables
via partitioning

Successful when the optimal approach
requires a small subset of the commodities
to take all the capacity

Successful when the optimal approach
requires a large portion of the commodities
to share the link capacities (max total
flow only)

Excels when demand is concentrated on
“near” commodities

Excels when demand is concentrated on
“far apart” commodities

Paths computed based on clustering Path-agnostic, can use any set of paths

Reduces # of FIB entries No impact to FIB entries

Maximum Total Flow objective only Supports multiple objectives

Table 5.2: Summary of the differences between NCFlow and POP.

perform well under these circumstances.

The results of this experiment are shown in Table 5.1, where we show the relative total

flow of each technique compared to PF4. As we can see, NCFlow significantly outperforms

POP on the “near” traffic matrix, which matches our intuition. When the commodities with

the largest demands are close to one another in the topology, there are fewer paths to choose

from. Thus, the likelihood of a single path—or even a single link—becoming a shared

bottleneck amongst many commodities increases, which, as we saw in Figure 5.1a, leads

to poor performance with POP.

5.4 Summary

In this chapter, we analyzed the strengths and weaknesses of NCFlow and POP and il-

lustrated how they both behave under certain traffic conditions. We showed that NCFlow

excels when the optimal approach requires a small subset of the commodities to take all
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the capacity, and this is much more likely to occur when the demand is concentrated on

“near” commodities. This directly contrasts with POP, which excels when the optimal

approach requires a large portion of the commodities to share the link capacities. Those

circumstances typically arise when the demand is heavily concentrated on “far apart” com-

modities in the topology.

There are more differences between the two techniques, which we did not fully cover

in this section but were previously discussed elsewhere. We summarize those differences

in Table 5.2. Ultimately, neither technique strictly dominates the other, and we hope that

our discussion clarifies and distinguishes the nuances between the two.



Chapter 6

Additional Applications of POP

6.1 Introduction

In this chapter, we discuss how to extend POP beyond traffic engineering to a broader set

of resource allocation problems in computer systems. In the course of our work, we dis-

covered that we could apply these techniques to similar problems in other domains. Thus,

we reframe our commodity-based partitioning approach as a general-purpose strategy that

can be applied to generic clients and resources in a resource allocation problem.

As computer systems become larger and workloads on these systems continue to grow,

it has become common for systems to be shared among multiple users. As a result, de-

ciding how resources (e.g., GPUs, links, servers) should be shared amongst various clients

while optimizing for many macro-objectives is important across a number of domains (e.g.,

cluster scheduling and load balancing, in addition to traffic engineering).

Like TE, these resource allocation problems can often be formulated as mathematical

optimization programs [12,65,85,93,103,106,117,120,131]; the output of these programs

is the allocation of resources (e.g., accelerators, servers, or network links) to each client

(e.g., jobs, data shards, or traffic commodities). Unfortunately, solving these mathematical

programs can be computationally expensive. The worst-case complexity for linear pro-

grams is approximately O(n2.373) [44, 91], where n is the number of problem variables

(even though LPs can often be solved faster depending on problem structure), and integer-

linear programs are even more expensive. Mathematical programs for resource allocation
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can have millions of variables (e.g., one variable for every (client,resource) pair) for

large-scale systems, leading to long solution times depending on the numerical solver used

(e.g., 8 minutes for a cluster with 1000 jobs using SCS [108, 109]). Moreover, allocations

often need to be recomputed frequently to keep up with dynamic changes in the system,

which we’ve also seen in the TE problem setup. Consequently, production systems such

as the Accordion load balancer [127] for distributed databases and the Gavel job sched-

uler [103] hit performance bottlenecks when the numbers of clients and resources increase.

Thus, the conventional wisdom in the systems community is that solving these pro-

grams directly often takes too long. Instead, production systems and researchers frequently

use heuristics that are cheaper to compute. It is common to see some version of the follow-

ing statement in a research publication:

“Since these algorithms take a long time, they are not practical for real-world

deployments. Instead, they provide a baseline with which to compare faster

approximation algorithms.” – Taft et al. [131].

The partition-placement algorithm in E-Store [131], the space-sharing-aware policy in Gan-

diva [142], and cluster management policies to allocate resources to containers in sys-

tems like Kubernetes [4], DRS [69], and OpenShift [8] all rely on heuristics. However,

prior work shows that these heuristics are hard to maintain as problems scale and inputs

change [130], are far from optimal (Figures 6.1 and 6.8), and often do not extend to slightly

modified objectives.

Although it seems that large optimization problems are too expensive to solve directly,

we observe that many allocation problems in computer systems share several exploitable

properties that we also observed in the TE setting: the number of clients and resources is

large, each client requests a small fraction of the total number of resources, and resources

are fungible or substitutable (i.e., a job can make similar progress using different resources).

We propose that POP can be applied to any such granular allocation problem. As was the

case with traffic engineering, POP can quickly compute allocations by reusing the original

optimization problem formulation on subsets of the input. On several granular optimization

problems outside of TE, we found that POP can give close-to-optimal results with orders-

of-magnitude faster runtimes than the full formulations. Importantly, since POP reuses the
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Figure 6.1: Comparison of Gavel’s fair-sharing policy compared to its POP variants and Gan-
diva [142] on a GPU cluster. The scatterplot shows runtimes and mean allocation quality across
2048 jobs on a cluster with 1536 GPUs. POP-l uses l sub-problems.

original problem formulations, it can be implemented in only a few lines of code.

The simplest way to apply POP is to divide clients and resources among l identical

copies of the given optimization problem (each with a subset of the clients and resources).

Each sub-problem has fewer equations and variables, leading to a super-linear runtime

speedup. The sub-problems can also be executed in parallel. The overall allocation is a

union of the allocations from the individual sub-problems. Our results show that randomly

and evenly dividing clients and resources among sub-problems works well when clients

are numerous and individually use only a small fraction of all resources. Empirically, we

show that POP’s resource allocations are nearly optimal on several optimization problems,

including using real-world inputs. We also prove that the probability of a large optimality

gap is small given an allocation problem with certain simple properties. POP has structural

similarity with the first step of “primal decomposition” in convex optimization [30], but

can be applied to a broader set of problems than those amenable to primal decomposition

(separable objective, coupled constraints). We note that there can be other ways to POP an

optimization problem, but these are beyond the scope of this chapter.

In the wild, allocation problems do not always fit the definition of granular as presented

above, e.g., a cluster scheduling problem could have “large” clients (jobs) with substantial

hardware demands, or a client might have to use a particular resource (e.g., a specific GPU).

Fortunately, in some cases, we can transform the problem into a granular problem using
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two granularization techniques: client splitting1 and resource splitting. The “large” clients,

which individually require a sizable fraction of total resources, can be split into multiple

virtual clients who each receive partial allocations from multiple sub-problems. Since the

number of “large” clients is small, by definition, POP’s sub-problems remain small and still

achieve a sizable runtime speedup. Similarly, resources can be split into multiple virtual

resources, each with a fraction of the full resource’s capacity.

POP cannot be applied to every allocation problem in systems because some problems

are not granular or require a non-trivial partitioning into sub-problems (e.g., due to con-

straints). We discuss examples of such problems in §6.6.

Nevertheless, we found that POP is effective on a wide range of important problems

in recent computer systems research. We have already shown its effectiveness on traffic

engineering problems for three different objectives; in this chapter, we evaluate POP on

four more allocation objectives across two different domains: cluster scheduling and load

balancing. POP achieves empirical runtime improvements of up to 100× compared to

the original optimization problem formulations while staying within 1.5% of optimal, and

even up to 20× faster and 1.9× higher quality than heuristics. We integrated POP into real

systems like Gavel, and found that downstream metrics like average job completion time

and makespan are unaffected by using POP. We also found granularization useful in using

POP to compute high-quality allocations for initially non-granular problems.

6.2 Granular Allocation Problems

Computer systems are often shared among clients from multiple users (e.g., jobs in a clus-

ter scheduler, commodities in a wide-area network). These clients might then request re-

sources (e.g., GPUs or bandwidth on a network link) from a central resource allocator,

which determines how to map resources to clients. Resource allocation problems have

three main components:

• Search Space of Allocations: Allocations specify how resources should be shared

1In this chapter, “client splitting” effectively represents a more general framing of commodity splitting.
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between clients. In cluster scheduling, an allocation can specify the fraction of wall-

clock time each active job should spend on different types of resources (e.g., types

of GPUs like K80, P100, V100, A100). In query load balancing, an allocation can

specify which servers should store which shards of data. Allocations can also rea-

son through the interactions between clients on different resources (e.g., the time

fractions pairs of jobs should spend on various resources [103, 142]).

• Objectives: The objective that an optimization problem maximizes or minimizes is

a function over the allocation, and specifies the metric (e.g., dollar cost, number of

queries) that needs to be optimized in solving the allocation problem. We observe

that these functions are typically a max or a sum over functions of per-client alloca-

tions. They can, however, be other arbitrary functions as well; convex functions are

generally easier to optimize.

• Constraints: Most allocation problems also specify constraints to ensure that both

clients and resources are not over-allocated (e.g., the total time fraction given to a

single job across resource types cannot exceed 1.0) and that various invariants are

maintained. These are specified as functions over the allocation A.

The goal of a resource allocation problem is to find the allocation value that is feasible

(respects the provided constraints) and optimizes the provided objective.

We can then say an allocation problem is granular if:

• Condition 1: The number of clients and resources is large (on the order of 100s or

more).

• Condition 2: Each client requests an insignificant fraction (e.g., < 1%) of the total

available resources.

• Condition 3: Resources are fungible or substitutable. In other words, if a client

c is given resource r as part of an allocation A, there are multiple other resources

r′ 6= r such that switching c to r′ gives an allocation A′ with similar objective value

(f(A) ≈ f(A′)).
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• Condition 4: If the resource allocation problem considers interactions between mul-

tiple clients (e.g., two jobs on the same server), then client combinations should be

fungible or substitutable too.

As we show in §6.4, resource allocation problems in a number of different domains like

traffic engineering, cluster scheduling, and load balancing, are granular. Furthermore, in

certain cases, problems that violate some of these conditions can be made granular through

granularization transformations (client and resource splitting in §6.3.3).

For example, in Gavel [103], a cluster scheduler for machine learning training work-

loads on clusters of GPUs, each job (client) requests a prescribed number of a resource

(e.g., a specific kind of GPU) to make progress. Each job requests a small fraction of the

total number of GPUs available in the cluster, and can be run on different types of GPUs

with varying efficiencies. Additionally, when used with space sharing [103, 142], each job

can be run with many other jobs (again with varying efficiencies). We assume that depen-

dencies that specify when jobs are runnable are handled by a separate DAG scheduler. This

is standard in systems such as Spark and Hadoop [145]. Such cross-job “when can job X

run” dependencies are not under the purview of the resource schedulers considered in this

chapter, which try to determine how resources should be shared among already runnable

jobs only.

In the traffic engineering scenario, as we have already seen in Chapter 3, the clients

are commodities, each resource is a network link between two sites in the WAN, and each

commodity typically requests a small fraction of the total available capacity. In load bal-

ancing, the clients are data shards, the resources are servers, and each shard can be handled

by a small fraction of the total number of servers available in the system.

6.3 Partitioned Optimization Problems

Granular resource allocation problems can be split into sub-problems, where each sub-

problem has a subset of the clients and resources in the full allocation problem. We lever-

age the large number of clients and resources to randomly partition clients and resources

into sub-problems; this procedure yields high-quality allocations due to the law of large



CHAPTER 6. ADDITIONAL APPLICATIONS OF POP 81

numbers. We call this technique Partitioned Optimization Problems (or POP for short). In

the rest of this section, we describe the intuition, procedure, and benefits of POP.

6.3.1 Intuition

Optimization problems for large systems take a long time to solve in part because they have

many variables. For example, consider an optimization problem that involves scheduling

n jobs on m cloud VMs. Each VM has varying amounts of resources (e.g., CPU cores,

GPUs, and RAM). To express the possibility of any job being assigned to any VM, an

n × m matrix of variables would be needed; for 104 jobs and 104 VMs, the problem has

108 variables. Contemporary solvers often take hours to solve such problems, although the

exact runtime depends on problem properties such as sparsity [136].

We can achieve much faster allocation computation times by decomposing the problem;

for example, the problem of scheduling 103 jobs on 103 VMs (100× fewer variables) is

much more tractable. This procedure of breaking up the larger problem into sub-problems

reduces the search space explored by the solver, since interactions between all combina-

tions of clients and resources are no longer considered. Instead, only combinations of

subsets of clients and resources are considered, which reduces runtime but also can reduce

the quality of the allocation. In light of this, the interaction between clients and resources

needs to be considered carefully to take into account the many global constraints in the

original problem, as well as the objective (e.g., fairness). We find that on large granular

resource allocation problems, splitting clients randomly and assigning an equal number of

resources among sub-problems reduces the search space of feasible solutions that needs

to be considered by solvers, while still ensuring that some high-quality feasible points are

in the explored search space. This is the main intuition that allows POP to be effective,

returning allocations of similar quality as the original formulation but faster.

6.3.2 Procedure for Granular Problems

The first step of POP is to partition larger allocation problems into smaller alloca-

tion sub-problems. The type of partitioning allowed is dependent on the objective and

constraints of the allocation problem, and has implications on the runtime speedups and
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Algorithm 3 POP Procedure.

Input: Clients and their attributes X = [x1, x2, . . . , xn], resources and their attributes
Y = [y1, y2, . . . , ym], function to compute allocations GET ALLOCATION : (X, Y )→ A,
number of sub-problems l, (optional) splitting attribute s, (optional) ratio of extra virtual
clients allowed t.
Return: Allocation for all n clients, A.

// Optional: make the problem granular if it is not already.
X ′ = SPLIT CLIENTS(X, s, t), Y ′ = SPLIT RESOURCES(Y )

// This is the partition step.
[X ′1, X

′
2, . . . , X

′
l ], [Y

′
1 , Y

′
2 , . . . , Y

′
l ] = partition(X ′, Y ′, l)

// This is the map step, can be performed in parallel.
for i in range(l) do
Ai = GET ALLOCATION(X ′i, Y

′
i )

end for

// This is the reduce step; allocations Ai are combined.
A = COALESCE([A1, A2, . . . , Al])

quality of the returned allocation. We can then re-use the map-reduce API [48, 145] (or

divide-and-conquer): each of these sub-problems can be solved in parallel (map step), and

then allocations from the sub-problems can be reconciled into a larger allocation for the

entire problem (reduce step). We show pseudocode for this in Algorithm 3.

The partitioning step affects the runtime, the reconciliation complexity, and ultimately

the quality of the final allocation. One straightforward approach that we explore in this

chapter is to divide both clients (e.g., jobs, shards) and resources (e.g., servers) randomly

into sub-systems, as shown in the top half of Figure 6.2. We find that this partitioning

scheme is effective even when clients have attributes with skew (e.g., jobs in a shared

cluster with various priority levels, or data shards in query load balancing with different

loads). Low-quality allocations can also result from clients having vastly different utilities

with different resources. For example, a resource could be a network link between two sites

in a WAN. A commodity might have to use this link to send traffic between these two sites.

This chapter shows how client and resource splitting (§6.3.3) can be used to transform some
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Figure 6.2: POP partitions the system to reduce the number of optimization problem variables. For
a problem where the number of variables is the number of clients times the number of resources,
dividing clients and resources evenly among l sub-problems reduces the number of variables in each
sub-problem by l2.

of these “hard” problems into a form that is then amenable to random partitioning. Other

broad partitioning strategies can also be used depending on problem structure (e.g., assign

all “geographically close” clients and resources to the same sub-problem), but these are out

of the scope of this chapter. With random partitioning, the reduce step is cheap, as simply

concatenating sub-system allocations yields a feasible allocation to the original problem.

6.3.3 Transformations to Granularize Problems

In some cases, it might not be possible to either return an allocation that is feasible or high

quality by merely assigning each client and resource to sub-problems at random when using

the POP procedure. Skewed workloads with heavy tails are common in practice [133].

As an example, consider a query load balancing problem where we try to assign shards

containing various keys to compute servers: our goal is to spread load evenly amongst

the available servers, which can be formulated as a mixed-integer linear program (§6.5).

In such a setting, it is common for single shards to be hot: for example, Taylor Swift’s
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Figure 6.3: Client splitting, where we granularize non-granular problems by splitting clients based
on a splitting attribute s.

Twitter account receives much more request traffic compared to the average Twitter user.

In light of these hot shards, it might not be possible to assign shards to individual sub-

problems and obtain sub-problems with input distributions similar to the original problem

(and consequently leading to either an infeasible or poor-quality allocation). To transform

these into granular problems, we propose an algorithm to split variables for clients and

resources across several sub-problems.

Client Splitting. We require the user to specify the client attribute that specifies resource

demand and can be split across several sub-problems; all other attributes are copied over

without change. In the load balancing example, where clients are data shards and attributes

include shard load and memory size, the splitting attribute is the shard load. In the traffic

engineering example, the splitting attribute is the commodity’s traffic demand. Given this

splitting attribute, we then construct a priority queue (heap) of the corresponding attribute

values for all clients. Given a threshold t (t is typically a number less than 1) on the

maximum number of extra virtual clients allowed, we pop and split variables off the queue,

and then push the new variables back into the queue. Each split reduces the value of the

splitting attribute of the popped variable by a factor of 2. Importantly, each split maintains

the feasibility invariant: the coalesced allocation across virtual clients will still be feasible
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Algorithm 4 Client Splitting Algorithm.

Input: Inputs X = [x1, x2, . . . , xn], splitting attributes s, ratio of extra virtual clients t
allowed.
Return: Mapping from real to virtual clients {xi → [x′j]}.
Initialize queue← MAX HEAP(), mapping← {}.
For all i ∈ {1, 2, . . . , n}, queue.PUSH(xi.s, xi).

while len(queue) ≤ (1 + t) · n do
xmax = queue.POP()
Split xmax by attribute s into two copies x1max and x2max (x1max.s, x

2
max.s = xmax.s/2).

UPDATE MAPPING(xmax, [x
1
max, x

2
max])

queue.PUSH(x1max.s, x
1
max), queue.PUSH(x2max.s, x

2
max)

end while

(since the total sum of splitting attribute values remains the same). By reducing the value of

the splitting attribute, client splitting breaks down large clients into a collection of smaller

clients with equivalent total demand. The runtime of this algorithm is O(n log n), where n

is the number of clients, which is cheap compared to the runtime of allocation computation

in each sub-problem. Algorithm 4 shows pseudocode, and the procedure is illustrated in

Figure 6.3. Empirically, we found that most problems are granular enough for POP to work

well with 0 split clients. Client splitting does not adversely impact allocation quality, but

can increase runtime. The hardest problems in our experiments required t = 0.75. The

optimal value of t is problem-specific and it is possible that users may have to dynamically

adapt t to get the best performance from POP; however, in all of the considered production

use-cases in our experiments, we found that small values of t that worked well for historical

problem instances continue to work well on future problem instances.

Resource Splitting. If a client has to use a particular resource to make progress, POP

will not work out of the box, since randomly partitioning clients and resources into sub-

problems might result in a partitioning where the client is not matched with its preferred

resource. In such cases, each resource can be split into l “virtual” resources (where l is

the number of sub-problems). Each virtual resource has l× lower capacity, and is assigned

to a different sub-problem. By ensuring that each virtual resource has lower capacity, we
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ensure that the final coalesced allocation is still feasible.

Client and resource splitting are not always applicable. For example, resource splitting

cannot be used easily if the allocation problem’s objective depends on whether a resource

is used or not (e.g., an allocation problem that tries to minimize the number of resources

used). Similarly, client splitting cannot be used easily for problems which take into account

interactions between multiple clients sharing a resource.

The resulting allocation problem after these transformation steps can be granular; if

so, we can use POP to solve it. After the partition step, we obtain allocations for each

virtual variable in the problem. Allocations assigned to virtual variables corresponding to

a single client need to be summed to obtain the final allocation. We show how this can be

incorporated into the full POP procedure in Algorithm 3.

6.3.4 Benefits of POP

POP has several desirable properties:

• Simplicity: Users do not need to design new heuristics from scratch to scale up to

larger problem sizes, and can reuse their original problem formulations.

• Generality across domains and solvers: POP can be used to accelerate allocation

computations for many different types of problem formulations across domains. POP

also easily integrates with different solvers.

• Applicability to different types of objectives: POP can be applied for a broad

class of objectives, such as minimizing total makespan, maximizing minimum fair-

ness [67], or maximizing proportional fairness [13].

• Composability: POP can be used for any granular allocation problem in an outer

loop as a simplifying step; existing heuristics or approximation algorithms can then

be used to solve the resulting sub-problems.

• Tunability: The number of sub-problems is a knob for trading off between allocation

quality and runtime.
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6.4 Case Studies of Applying POP

In this section, we describe two other resource allocation problems that are formulated

as optimization problems: scheduling of jobs on clusters with possibly heterogeneous re-

sources [103] and query load balancing [46,127,131]. We show the full exact problem for-

mulations presented in the corresponding papers, and then explain how POP can be used

to compute high-quality allocations faster. We also present some examples of problems

which are not granular and out of scope for POP.

6.4.1 Resource Allocation for Heterogeneous Clusters

We first discuss the optimization problem formulations used in Gavel, which supports a

range of complex objectives. These can be accelerated using POP since these problems are

granular, i.e., meet the conditions in §6.2.

Gavel [103] is a cluster scheduler that assigns cluster resources to jobs while optimizing

various multi-job objectives (e.g., fairness, makespan, cost). Gavel assumes that jobs can

be time sliced onto the available heterogeneous resources, and decides what fractions of

time each job should spend on each resource type by solving an optimization problem.

Optimizing these objectives can be computationally expensive when scaled to 1000s of

jobs, especially with “space sharing” (jobs execute concurrently on the same resource),

which requires variables for every pair of runnable jobs.

Allocation problems in Gavel are expressed as optimization problems in terms of a

quantity called effective throughput: the throughput a job observes when given a resource

mix according to an allocation A, computed as:

throughput(job j, allocation A) =
∑

i

Tji · Aji.

Tji is the raw throughput of job j on resource type i. In Gavel, vanilla heterogeneity-aware

allocations Aji are assigned to each combination of job j and GPU type i. Aji represents

the fraction of wall-clock time that a job j should spend on the GPU type i. We now show

formulations for three objectives.
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Max-Min Fairness. The Least Attained Service policy [67] tries to give each job an

equal resource share of the cluster. The heterogeneity-aware version of this policy can

be expressed as a max-min optimization problem over all active jobs in the cluster. We

assume that each job j has fair-share weight wj and requests zj GPUs. Then, to take into

account the impact of moving a job between GPU types, we find the max-min allocation of

normalized effective throughputs:

MaximizeA min
j

1

wj

throughput(j, A)

throughput(j, Aequal)
· zj.

Aequal is the allocation given to job j assuming it receives equal time share on each

worker type in the cluster. We also need to specify constraints to ensure that jobs and the

cluster are not over-provisioned (e.g., total GPU allocation time does not exceed the total

number of GPUs):

0 ≤ Aji ≤ 1 ∀(j, i)
∑

iAji ≤ 1 ∀j
∑

j Aji · zj ≤ num workersi ∀i

The above formulation can be extended to consider space sharing [103, 142], where

multiple jobs execute concurrently on the GPU to improve GPU utilization, by only chang-

ing the way effective throughput is computed; see the Gavel paper [103] for details.

Proportional Fairness. Proportional fairness [13] tries to maximize total utilization while

still maintaining some minimum level of service for each user (in this case, job). Pro-

portional fairness for GPU cluster scheduling can be formulated as the following convex

optimization problem:

MaximizeA
∑

j

log(throughput(j, A)).

Constraints are the same as before. Per-job weights and other extensions are also possible

(the above objective can be interpreted as a sum of utilities, i.e., MaximizeA
∑

i Ui(Ai)).
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Minimize Makespan. We can also minimize makespan (the time taken by a collection

of jobs to complete) using a similar optimization problem framework. Let num stepsj be

the number of iterations remaining to train job j. The makespan can then be computed as

the maximum of the durations of all active jobs; the duration of job j is just the ratio of the

number of iterations to throughput(j, A). Mathematically, this can be written as follows

using the same above constraints:

MinimizeA max
j

num stepsj
throughput(j, A)

.

Using POP. We can use POP on these cluster scheduling problems by partitioning the

full set of jobs into job subsets, and the cluster into sub-clusters. Each sub-cluster has an

equal number of resources (GPUs of each type), and jobs are partitioned randomly into the

job subsets. The POP solution is feasible by construction. Since the cluster has multiple

resources of each type (e.g., GPU of specific generation), the problem is granular by de-

fault, and does not require additional transformations to be made granular. Additionally,

even when allowing job colocation (using space sharing), jobs can make progress colocated

with many other jobs.

6.5 Query Load Balancing

Systems like Accordion [127], E-Store [131], and Kairos [46] need to determine how to

place data items in a distributed store to spread load across available servers.

We consider the problem of load balancing data shards (collections of data items). This

is similar to the single-tier load balancer in E-Store, but acting on collections of data items

instead of individual tuples. The objective is to minimize shard movement across servers

as load changes, while constraining the load on each server to be within a tolerance ε of

average system load L. Each shard i has load li and memory footprint fi. Each server j has

a memory capacity of memoryj that restricts the number of shards it can host. The initial

placement of shards is given by a matrix T , where Tij = 1 if partition i is on server j. A is

a shard-to-server map, where Aij is the fraction of queries on partition i served by j, and

A′ij = 1 if Aij > 0, 0 otherwise. Finding the balanced shard-to-server map that minimizes
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data movement can then be formulated as a mixed-integer linear program:

MinimizeA
∑

i

∑

j

(1− Tij)A′ijfi.

Subject to the constraints:

L− ε ≤∑iAijli ≤ L+ ε ∀j
∑

j Aij = 1 ∀i
∑

iA
′
ijfi ≤ memoryj ∀j

Aij < A′ij ≤ Aij + 1 ∀(i, j)

Using POP. The load balancing problem can be accelerated using POP by dividing the

shard set and server cluster into shard subsets and server sub-clusters, while ensuring that

each shard subset has the same total load.

6.6 When is POP Not Applicable?

Although POP can be used on a number of different resource allocation problems, it cannot

be used for all possible problem formulations. Here, we present a few examples of resource

allocation problems where POP with random partitioning cannot be used.

Capacitated Facility Location. The capacitated facility location problem tries to mini-

mize the cost of satisfying users’ demand given a set of processing facilities. Each facility

has a processing capacity, and also a “leasing cost” if used at all (if a facility is not pro-

cessing any demand, it has a leasing cost of 0). The cost of processing some demand by a

facility is proportional to the distance of the facility from the user. Problems where a user

is only close to a single facility are not amenable to POP and violate condition 3 in the

definition of granularity: partitionings of the problem where the user is not placed into the

same sub-problem with the facility closest to them would lead to a low-quality allocation.

Additionally, resource splitting cannot be used to make the problem granular, since the ob-

jective explicitly takes into account whether facilities are used or not, and creating multiple
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variables for a single (client,resource) pair would require additional constraints across

sub-problems. More generally, resource allocation problems where clients prefer one re-

source over all other available resources by a large amount are a poor fit for POP unless

resource splitting can be used.

Global Rescheduling with Plan-Ahead. TetriSched [134] is a scheduler that can take

into account upcoming resource reservations when deciding how to allocate resources to

jobs. TetriSched allows preferences to be specified declaratively (e.g., a job comes in at a

specific start time and needs to be completed by a specific end time). These preferences

are then compiled into a mixed-integer linear program (MILP). These MILPs can be ac-

celerated using POP by dividing the jobs and resources into job and resource subsets, and

solving each sub-problem independently. However, TetriSched also supports combinatorial

constraints, such as “a particular set of k jobs must use the same resource”, which cannot

be supported by POP without smarter partitioning algorithms.

6.7 Analysis

The effectiveness of POP is directly tied to how clients and resources are partitioned across

sub-problems. In this section, we consider a simple resource allocation problem and prove

that the probability of a large optimality gap with the POP procedure and random partition-

ing is low, discuss how POP relates to primal decomposition (a technique used in convex

optimization to decompose certain types of optimization problems), and also note the ex-

pected runtime benefits.

6.7.1 Theoretical Analysis for a Simple Problem

In settings with large numbers of clients, POP with random partitioning works well. In

this section, we consider a simplified allocation problem and compute an upper bound on

the probability that POP (using l sub-problems) with random partitioning results in a low-

quality allocation.
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Figure 6.4: Simple partitioning problem where jobs are assigned servers (or resources). Each job i
derives utility ui,1 from resource 1 and ui,2 from resource 2.

The allocation problem we consider assigns servers to jobs. We assume that the problem

has the following properties:

• n jobs and servers. Each job is allocated a single server.

• r distinct server types (equal number of each type).

• Job i has utility ui,s on resource type s.

• The largest difference in utility for any job across any two servers is umaxgap.

A job is “type-s” if it achieves highest utility on a type-s server. With two server types, we

have type-1 and type-2 jobs (shown in Figure 6.4).

The objective of this problem is to maximize the overall utility of the allocation, defined

as the sum of every job’s utility on its assigned server.

Now, if we use POP to solve this problem, we would equally partition servers of each

type into sub-clusters, randomly assign jobs to sub-clusters, and then solve assignment

problems separately for each sub-cluster. We wish to answer the following questions in

this regime:

1. What is the optimality gap of the solution using the POP procedure (with respect to

the optimal solution for the full problem)?

2. How do the values of n, r, umaxgap, and l affect this optimality gap?
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One way to quantify the optimality gap is to count the number of “misplaced” jobs in

each sub-problem (e.g., type-1 jobs that are not assigned “resource 1” because there were

too many other type-1 jobs in the relevant sub-problem). Define qs,t to be the number of

type-s resources that are misplaced in sub-problem t. The distance from optimal utility,

i.e., optimality gap, is bounded by the product of this number and umaxgap added across all

resource types and sub-problems:

Optimality gap ≤
r∑

s=1

l∑

t=1

qs,tumaxgap (6.1)

We note that this is a loose bound for the gap, since jobs with large resource utility gaps

would be allocated their optimal resource even within a sub-problem.

To quantify the performance gap between POP and optimal solutions, we now need a

sense of how big qs,t can be in practice. We walk through the full derivation of a bound on

the probability that the optimality gap exceeds a given value in the Appendix, but briefly

sketch it here. The random assignment of all type-s jobs to sub-problems can be interpreted

as Bernoulli trials where the probability that any given type-r job is placed in a given sub-

problem is 1/l. We then use a classical Chernoff bound [100] to compute the probability

that each qs,t exceeds a fraction δ of its expected value (n/rl). We can combine these

across all job types and sub-problems using the union bound to find an upper limit on the

probability that the total number of misplaced jobs exceeds δn. This allows us to bound the

distance of a randomly-partitioned POP allocation from optimal utility by δumaxgapn:

Pr
[
U(Γ∗)− U(ΓPOP) ≥ δumaxgapn

]
≤ rl exp

( −δ2n
(2 + δ)rl

)
(6.2)

where Γ∗ is an optimal allocation, ΓPOP is the allocation returned by the POP procedure,

and U() : Γ→ u is a function that maps an allocation Γ to a scalar value (the utility).

Equation 6.2 defines the relationship between the problem parameters (n, r, umaxgap and

l) and the probability that the optimality gap exceeds a given fraction δ of the worst-case

gap if every job is allocated its worst resource (umaxgapn). Concretely, the probability decays

exponentially with n; as the problem gets larger, the probability of having a large optimality

gap becomes very small. The probability also decays exponentially with δ2. On the other
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hand, the probability of a large optimality gap increases as r, l, and umaxgap increase; this is

to be expected, as having many sub-problems and many resource types increases problem

heterogeneity and makes it more likely for a random partitioning to lead to misplaced jobs

and a lower-quality allocation.

To put this bound into perspective, consider a large cluster with 1 million jobs, l = 10

sub-problems, and r = 4 resource types of equal amounts (n/rl = 25, 000); the probability

that more than 3% of jobs are not allocated their optimal resource is upper bounded by

0.000614.

To summarize, the bound given in Equation 6.2 for a simple allocation problem gives

insight as to why POP works well empirically for more complex granular resource alloca-

tion problems like those described in §6.4.

6.7.2 Relationship to Primal Decomposition

For many problems, such as when the objective function is separable and convex (that is,

the objective can be expressed in the form “Maximize U(A) =
∑

i Ui(Ai)” with per-job

utility functions Ui), POP can be interpreted as the first iteration of primal decomposition,

a well-known method from convex optimization [30]. Primal decomposition is an iterative

technique; for a resource allocation problem, it works by decomposing the large problem

into several smaller allocation problems, each with a subset of clients and resources. In

each iteration, every sub-problem is solved individually, and then the dual variables of each

sub-problem are used to determine how to shift resources between the sub-problems; those

found to be relatively resource-starved are given more resources from other sub-problems

for the next iteration.

Like many other techniques from the optimization literature, primal decomposition

works for a restricted set of problems, namely those with separable objectives and cer-

tain types of constraints (see Boyd et al. [30]). These restrictions come into effect during

the resource-shifting phase prior to subsequent iterations. For a “well-partitioned” problem

with a separable objective (i.e., each sub-problem has sufficient resources), one iteration of

primal decomposition is often sufficient and resource shifting is not required [30]. Primal

decomposition and POP are thus equivalent for these problems, explaining why POP can
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produce a high-quality allocation efficiently. However, this explanation does not apply to

other problems where primal decomposition cannot be used (e.g., non-convex problems,

such as the MILP used in the load balancing problem from §6.5), even though we found

POP to still be effective in such regimes.

6.7.3 Expected Runtime Benefits

We can estimate the runtime benefits of POP when used with linear programs. Solvers for

linear programs have worst-case time complexity of O(f(n,m)a) (a ≈ 2.373 [44] in the

worst case) where f(n,m) is the number of variables (n clients and m resources) in the

problem. If f(n,m) = n · m and both clients and resources are partitioned across l sub-

problems, each sub-problem will have l2× fewer variables, as illustrated in Figure 6.2. The

asymptotic runtime savings are then proportional to l2a−1 if each sub-problem is solved

serially, and proportional to l2a if solved in parallel, assuming a cheap reduce step. Some

problems have an even larger potential for runtime reduction. For example, if the allocation

considers interactions between two jobs on the same resource, then the problem would have

n2m variables, and using POP would lead to a larger runtime speedup (proportional to l3a−1

if each sub-problem is solved serially, and proportional to l3a if solved in parallel).

6.8 Implementation

This more general form of POP is easy to implement on top of a number of existing solvers

for a variety of different granular allocation problems. The main method that needs to be

implemented is partition, which given a collection of clients and resources, assigns them

to sub-problems. The subsequent map step then involves calling the existing solver routine

for the already-written problem formulation on the smaller sub-problem. The reduce step

is similarly simple, and involves concatenating the allocations obtained from each of the

sub-problems and summing allocations across virtual clients and resources (when using

client and resource splitting).

We implemented POP on top of a number of different solvers (MOSEK using cvxpy [14,

50], Gurobi [68], and a custom solver [13] that uses PyTorch [114]) for problems across
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diverse domains, in < 20 lines of code in each case. We implemented client splitting

in about 100 lines of Python code. Our evaluation code—which includes specific im-

plementations for cluster scheduling and load balancing—is open-sourced on GitHub at

https://github.com/stanford-futuredata/POP.

6.9 Evaluation

In this section, we seek to answer the following questions:

1. What is the effect of POP on allocation quality and execution time on granular allo-

cation problems? How does it compare to relevant heuristics?

2. Does POP work across a range of solvers and types of optimization problems?

3. How effective are POP’s client and resource splitting optimizations in generating

high-quality allocations?

4. How does random partitioning compare to other more sophisticated problem parti-

tioning strategies?

We evaluate POP on problems from two domains:

1. GPU cluster scheduling, where we apply POP to solve the optimization problems

used in Gavel (§6.4.1), and compare with the greedy Gandiva policy [142].

2. Shard load balancing in distributed storage systems, where we apply POP on the

problem formulation in §6.5, and compare to a heuristic from E-Store [131].

Where relevant, we integrate POP into systems such as Gavel [103] to measure the end-

to-end impact of POP on application performance. Our results span three different cluster

scheduling policies (max-min fairness, minimize makespan, and proportional fairness) and

one load balancing policy (minimize number of shard transfers as load changes).

We first present end-to-end experiments, then present some microbenchmarks that ex-

amine the impact of various algorithmic contributions in POP.

https://github.com/stanford-futuredata/POP
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Figure 6.5: Results for the max-min fairness policy (with space sharing) for cluster scheduling for
the formulation shown in §6.4.1 (“Exact sol.”) and its POP variants. POP-l uses l sub-problems.

6.9.1 End-to-End Results

We first demonstrate POP’s end-to-end effectiveness on various problems. We compare to

approaches based on allocation quality, and time needed to compute the allocation; the run-

time for POP includes the runtime for solving the optimization problems for sub-problems.

In all of our experiments, “Exact sol.” is the original unpartitioned problem formulation

and solver used by the reference system (e.g., Gavel for cluster scheduling). We believe this

is a fair baseline since it represents what people use today if using optimization problem

formulations for resource allocation. We use the same evaluation methodology as related

work. The total number of threads given to solvers for our baselines and POP are the same.

If l sub-problems are solved in parallel when using POP, each sub-problem uses 1/l of the

number of threads. We also present heuristics where relevant. Unfortunately, not every

problem has a state-of-the-art heuristic. For example, it is not clear how to use a heuristic

to solve for an approximate proportionally-fair allocation. We explicitly note when we use

client or resource splitting.

Cluster Scheduling

We used POP to accelerate various cluster scheduling policies supported by Gavel [103].

We then used these POP-ped policies in Gavel’s full simulator2 to measure the impact of

2The Gavel paper [103] shows that its simulator demonstrates performance very similar to behavior on
the physical cluster.
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POP on end-to-end metrics of interest, like average job completion time and makespan for

real traces. The traces and methodology used are identical to those used in Gavel.

Max-Min Fairness. We show the trade-off between runtime and allocation quality for the

max-min fairness policy with space sharing on a large problem (20482 job pairs on a 1536-

GPU cluster) in Figure 6.1 (in the introduction). POP leads to an extremely small change

in the average effective throughputs across all jobs (< 1%), with a 22.7× improvement in

runtime. Gandiva [142], on the other hand, uses a heuristic to assign resources to job pairs,

resulting in 1.9× worse allocation quality.

We unfortunately could not run end-to-end simulations for such large problem sizes: the

simulation involves running thousands of allocation problems, since an allocation problem

needs to be solved every time a new job arrives at the cluster or an old job completes.

This would take months to run at scale by virtue of the number of problems that need to

be solved and the time taken for each problem. Instead, we show full simulation results

on more moderate problem sizes. These experiments involve dynamic changes: the full

simulation involves new jobs coming in and old jobs completing, and consequently the set

of jobs is not static.

We ran experiments with 96 GPUs (32 V100, P100, and K80 GPUs). The original

heterogeneity-aware Least Attained Service policy without space sharing has a small num-

ber of variables (on the order of hundreds). Even on such smaller problem sizes, the quality

of allocation with POP is high, with only up to a 5% drop in average JCT (not pictured).

Figure 6.5 shows the average JCT of the original Least Attained Service policy from

§6.4.1, with space sharing, along with three POP-ified versions using 2, 4, and 8 sub-

problems. With space sharing, the number of variables scales quadratically with the number

of jobs: this leads to a performance speedup of 11×with l = 8 compared to the full problem

formulation, and similar average JCT.

We see similar behavior for max-min fairness policies when clients have more attributes

(e.g., different priority levels). Average JCTs are almost identical when jobs request multi-

ple GPUs, and increase by 5% for high-priority jobs in workloads containing a mix of low-

and high-priority jobs, using the Gavel simulator as before.
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Figure 6.6: Results for the proportional fairness policy for cluster scheduling for the formulation
shown in §6.4.1 (“Exact sol.”) and its POP variants. POP-l uses l sub-problems.
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Figure 6.7: Results for the minimize makespan policy for cluster scheduling for the formulation
shown in §6.4.1 (“Exact sol.”) and its POP variants. POP-l uses l sub-problems.

Proportional Fairness. We ran a simple experiment with the proportional fairness policy

with 106 jobs and a similar number of resources. Figure 6.6 shows POP combined with a

proportional fairness policy. This allocation problem is a general convex optimization prob-

lem (not a linear program), with a sum-of-log objective. For this problem, we implement

POP on top of a custom solver [13] that runs an order of magnitude faster than commercial

solvers for this particular problem formulation. We see strong scaling performance as we

increase the number of sub-problems (4.9× reduction in runtime with 8 sub-problems),

with an extremely small optimality gap (7× 10−5).
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Figure 6.8: Results for the minimize shard movement policy for load balancing for the formulation
shown in §6.5 (“Exact sol.”) and its POP variants. We also compare to a greedy heuristic (“Greedy”).
POP-l uses l sub-problems.

Minimize Makespan. Figure 6.7 shows the makespan of variants of the minimize make-

span policy. This policy again is a simple linear program with number of variables linear in

the number of jobs and resource types. Consequently, the runtime improvements are lower

(1.6×), but the end-to-end makespan over the trace is nearly identical.

Load Balancing

In Figure 6.8, we evaluate POP on a load balancing problem. In the problem, we have

1024 shards of data each assigned to exactly one of 64 servers. Each round, we receive

the query load of each shard and compute a new assignment of shards to servers such

that each server has approximately (within 5%) the same amount of load across its shards

but the number of shard movements is minimized. We examine the performance of POP

with various numbers of sub-problems and compare it to the original optimization problem

(§6.5) and a greedy heuristic algorithm from E-Store [131]. For each system, we run 100

rounds of the problem. In each round, we generate a new load distribution and rerun the

load balancing algorithm. We report the average runtime and number of shard movements

across these rounds.

We find that POP improves the runtime over the original problem by two orders of

magnitude, while outperforming the greedy heuristic. The exponential scaling of MILP

solvers restricted us to smaller problem sizes for the purpose of comparing against the
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optimal solution. Since shard movements are stateful (previous round’s solution is initial

state for current round), we added an extra step to re-balance the aggregate load in the

relatively small sub-problems, requiring a few extra shard movements. As l increases, the

number of sub-problems and thus the number of these movements also increases, which

is why POP-l does worse as l increases. This becomes less of an issue for larger problem

sizes where random allocations are likely to remain balanced.

6.10 Related Work and Discussion

In this section, we discuss other systems that use optimization problems to allocate re-

sources. We also comment on general efforts to accelerate solving large optimization prob-

lems and how POP fits into this body of work.

Optimization Problems in Systems. A number of systems besides the ones discussed in

§6.4 use optimization problem formulations to solve resource allocation problems.

TetriSched [134] is a cluster scheduler that is able to leverage runtime predictions and

deadline information (provided as input to the system) to make smarter near-term decisions

on how jobs should be allocated resources, while also providing room for uncertainty from

unknown future job submissions. Preferences in resource space-time can be expressed in

a new DSL called STRL; these are then compiled down to a mixed-integer linear program

(MILP) whose solution describes when and how jobs should be executed.

RAS [106] is a capacity reservation system that manages the allocation of servers to

clients within a datacenter region, while taking into account failures, resource heterogene-

ity, and maintenance schedules. RAS formulates problems as MILPs which are solved

hourly.

DCM [130] makes it easier to implement various cluster management policies (e.g.,

ensure containers have enough of a particular resource, or two containers are not placed in

the same rack) by having users specify cluster manager behavior declaratively through SQL

queries written over cluster state maintained in a relational database. Similar to TetriSched,

these queries are then compiled down to an optimization problem that can be solved by

constraint solvers, such as CP-SAT [2]. DCM supports affinity and anti-affinity constraints.
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Quincy [75] and Firmament [65] are centralized datacenter schedulers that use efficient

min-cost max-flow (MCMF) based optimization to scale up to large clusters. Another

approach to quickly find good solutions is through variable aggregation [95], where a group

of similar variables is represented with a single meta-variable, and then an optimization

problem over the meta-variables is solved. The meta-solution can be used to derive a

solution to the original problem.

SketchRefine [32] uses a similar approach to accelerate MILPs for “packaging” queries

in a database, which handle constraints and preferences over answer sets. It uses a quadtree-

based partitioning algorithm to group tuples (rows in the relation) into tuple subsets, and

then uses an iterative reconciliation procedure to convert initial per-group solutions into a

global solution. SketchRefine’s partitioning step can be expensive (on the order of min-

utes), since it is meant to be run over a fixed tuple set. While it is not clear how to extend

SketchRefine to resource allocation problems, which reason about interactions between

clients and resources, it offers another way to quickly compute good solutions to certain

types of large optimization problems in systems.

More Efficient Solving. The optimization community has developed various methods

for scaling optimization solvers to handle large problems. Fundamentally, these approaches

rely strictly on identifying and then exploiting certain mathematical structures (if they exist)

within the problem to extract parallelism; they make no domain-aware assumptions about

the underlying problem. For example, Benders’ decomposition [62, 119] only applies to

problems that exhibit a block-diagonal structure; ADMM [28, 110] has been applied to

select classes of convex problems, and Dantzig-Wolfe decomposition [47], while more

broadly applicable, offers no speedup guarantee. This poses a significant limitation when

applying these methods to real-world systems, which often do not meet their criteria or

would need mathematical analysis to determine if this structure exists.

As mentioned in §6.7.2, POP can be interpreted as the first iteration of primal decom-

position for optimization problems with separable objectives and certain types of coupled

constraints [30]. By randomly partitioning large numbers of clients and equally apportion-

ing resources into sub-problems, we found that it is possible to obtain high-quality solu-

tions with a single iteration for a broader set of allocation problem formulations, including



CHAPTER 6. ADDITIONAL APPLICATIONS OF POP 103

MILPs.

6.11 Summary

In this section, we showed how to extend POP to a number of resource allocation prob-

lems in computer systems beyond traffic engineering. These problems are granular, which

means they can be partitioned into more tractable sub-problems by randomly assigning

clients and resources without significantly sacrificing optimality. POP achieves strong re-

sults across a variety of tasks beyond TE, including cluster scheduling and load balancing,

with runtime improvements of up to 100×with small optimality gap, outperforming greedy

ad-hoc heuristics. We hope that this work motivates fellow researchers to use POP as a sim-

ple pre-solving step when solving optimization problems that arise in computer systems.
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Conclusion

How should we route traffic in large-scale wide-area networks, so that we can balance effi-

ciency and optimality? In this dissertation, we have shown that, by intelligently partitioning

the traffic engineering problem, we can achieve a better trade-off between these two im-

portant goals. We presented two different partitioning schemes—geographic partitioning

(NCFlow) and commodity-based partitioning (POP)—that outperform the state of the art,

and we illustrated their relative strengths and weaknesses. While these solutions may seem

simple at the surface, we’ve shown that the underlying complexity of these techniques must

be addressed to succeed on real-world traffic engineering problems, especially on a wide

variety of traffic patterns and topologies.

Undoubtedly, traffic engineering will continue to evolve over the coming years, and we

hope that our proposed algorithms serve, at the very least, as a useful reference point in

this line of research moving forward. There are a plethora of problems in this domain:

failure handling, capacity planning, and traffic forecasting, to name a few. We believe

that scalability will continue to be a fundamental challenge, especially as WANs grow

and evolve to meet the needs of end users around the world. Moreover, improvements

in scalability can have downstream impacts on these secondary and tertiary problems; for

example, we showed in Chapter 3 that a fast TE solver can respond quickly to failures in

the network, which may be advantageous compared to more proactive failure strategies.

Lastly, we also hope that our work finds an audience beyond the networking commu-

nity, because the techniques we have described here could potentially provide value beyond

104



CHAPTER 7. CONCLUSION 105

the TE setting. For example, techniques like NCFlow could prove useful in analogous do-

mains, such as social network analysis. Furthermore, in Chapter 6, we discussed how POP

can be applied to other resource allocation problems in the computer systems community,

such as cluster scheduling and load balancing. We are cautiously optimistic that there are

other domains that could also take advantage of POP’s simple yet effective approach for

allocating resources for large-scale problems.

In the rest of this chapter, we summarize a few of the lessons we have learned in the

course of our research, and we examine some of the broader impacts NCFlow and POP

have had beyond academia. Finally, we conclude by outlining opportunities for future

work.

7.1 Lessons Learned

Combining mathematical approximations with domain-aware insights. Both NCFlow

and POP are novel in that they marry mathematical approximations with domain-aware op-

timizations to produce a better trade-off between optimality and runtime efficiency. In

essence, we made deliberate modifications to the underlying TE linear programs to achieve

our results: in NCFlow, we created a set of new linear programs, while in POP, we effec-

tively omitted large subsets of variables from the original LP.

From the viewpoint of a theorist, such behavior might be considered cavalier; we are

not applying tried-and-true approximation strategies that are common in the theory liter-

ature, such as FPTAS. (Fleischer’s algorithm is an example of such an approach.) These

algorithms are important because they provide a very clear bound on the approximation

error (i.e., some ε) that is also directly linked to the algorithm’s runtime complexity. Sim-

ilarly, experts in convex optimization may quibble with our decision not to employ tradi-

tional methods like Dantzig-Wolfe decomposition, Benders decomposition, or ADMM, all

of which provide theoretical guarantees.

However, because these algorithms avoid making stronger assumptions, they are limited

in their efficacy, and they do not necessarily realize the ultimate end goal of our research:

a better trade-off between optimality and efficiency. In NCFlow, we proposed geographic

partitioning because of the nature of WAN topologies and the traffic on these WANs. In
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POP, we omitted large swathes of the original LP because we expected that many com-

modities (especially those that are located far apart in the topology) will not compete for

the same links.

We believe that combining these two strategies—mathematical approximations and sys-

tems optimizations, a union of theory and practice—can unlock significant rewards for a

host of problems in the computer systems research community. Each of these approaches

can pay dividends, but the intersection of the two is underutilized and ripe for more explo-

ration.

Randomization as a path to scalability. When we first proposed POP, many of our col-

leagues were skeptical that such a simple strategy would be effective for traffic engineering.

Although randomization has been applied to TE before (e.g., Valiant Load-Balancing), it

waned in popularity with the advent of Software-Defined Networking and the centralized

strategies it ushered in.

Why were our peers skeptical? We believe there are multiple reasons: for some, there

is a natural aversion to a randomized algorithm for such a mission-critical problem. The

pessimist will argue: why would we leave the traffic routes in our datacenter WAN up

to chance? The second reason, we believe, is due to a simple feature of our randomized

approach: it is quite easy to construct a small adversarial example to illustrate POP’s short-

comings, which we demonstrated in Chapter 5. As researchers, we naturally first reason

about large-scale problems on a much smaller scale to ensure correctness and build intu-

ition. When one does the same with POP on a WAN topology with only a few nodes, a few

links, and a trivial traffic matrix, it becomes glaringly obvious why it could fail.

But therein lies the rub: our goal was never to accelerate TE on small WANs—we only

cared about large ones! The oversight here is that a small example does not truly capture

POP’s effectiveness, because it does not exploit the power of randomized algorithms and

the Law of Large Numbers. Instead, one must reason probabilistically and argue that in

expectation this technique will succeed because of how large the problem’s inputs are.

From this work, we realized that randomization is a powerful technique for many large-

scale problems, and we suspect that there are other problems in other domains that might

benefit from this fresh perspective. We encourage researchers in the computer systems



CHAPTER 7. CONCLUSION 107

community to experiment with randomized approaches in their own endeavors; the results

may surprise you.

7.2 Broader Impact

We have open-sourced both NCFlow and POP on GitHub at https://github.com/

stanford-futuredata/pop-ncflow.git. There, one can find implementations

of both techniques, as well as the baselines we benchmarked against throughout this dis-

sertation. We also have made public the topologies and synthetic traffic matrices used in

our evaluation.

NCFlow was developed in conjunction with several collaborators at Microsoft Re-

search, with the hopes that it would be adopted in production to route traffic in the Azure

WAN. While several high-level conversations took place with the Azure Networking team,

NCFlow unfortunately never made it to production, due to its limited support for other

objectives beyond Maximum Total Flow. POP’s support for multiple objectives makes it

viable candidate for production systems, and this is ongoing future work.

Additionally, we experimented with POP on additional resource allocation problems at

other industrial partners, such as Meta. These collaborations are still ongoing.

7.3 Future Work

As we briefly mentioned in prior chapters, there are a host of interesting follow-up problems

that have arisen out of our work on NCFlow and POP. We recap and elaborate on some of

those potential extensions below, as well as describe previously unmentioned ones that have

piqued our interest and may be worth additional exploration:

Improving NCFlow: As discussed in Chapter 3, NCFlow struggled to find optimal traf-

fic allocations on maximum concurrent flow and min-max link utilization, both of which

are “weakest-link” objectives (i.e., the objective value is measured by the worst perform-

ing commodity or link). When analyzing NCFlow’s shortcomings more carefully on these

https://github.com/stanford-futuredata/pop-ncflow.git
https://github.com/stanford-futuredata/pop-ncflow.git


CHAPTER 7. CONCLUSION 108

objectives, we found that there are opportunities to improve its performance through addi-

tional experimentation and modification of our chosen heuristics. For example, a common

loss of flow originates from the arbitrary discrepancies between commodities chosen by the

source and target clusters in the SrcTargetMax linear program (see Figure 3.4). Impos-

ing a canonical ordering in this LP could mitigate this issue and increase NCFlow’s flow

allocations. Additionally, we wish to investigate possible recursive clustering strategies

with NCFlow, as well as alternative heuristics for allocating flow on inter-cluster edges to

address reconciliation issues between clusters.

Improving POP: We covered in Chapter 6 that POP has a broader set of applications

beyond traffic engineering, and we illustrated how it draws inspiration from the primal

decomposition method, a well-known technique from the convex optimization literature.

Specifically, POP represents the first step in primal decomposition, and we wonder: what

would happen if we ran it for multiple steps? This would require a shuffling of the com-

modities between the different sub-problems, which may add some complexity. But doing

so could also provide users with a natural progression from POP’s almost-optimal solutions

to true optimality.

In that same vein, we believe that there are further optimizations that we can apply from

the mathematical optimization community. Doubling down on our hypothesis that systems

and mathematics must both play a role in tackling these problems (which we previously

mentioned in this chapter), we think that a better framing of the optimization problem could

lead to other performance improvements and more efficient implementations. For example,

optimization researchers have demonstrated how to rewrite the edge formulation LP to be

“destination-based,” which reduces the total number of variables in the LP by a factor ofN ,

the number of nodes. We could additionally experiment with how the link constraints are

defined: for example, expressing them as differentiable functions could unlock Lagrangian

methods for solving these LPs, which are quite fast in practice. With the advancements

in high-performance computing on GPUs, such computations could be accelerated even

further.
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Hybrid approaches that leverage both algorithms: As discussed in Chapter 5, NCFlow

tends to outperforms POP when a small subset of commodities should dominate the flow

allocations to maximize total flow in the WAN, whereas the opposite is true when a more

egalitarian approach actually yields the best outcome. This begs the question: is there a way

to analyze the WAN topology and traffic matrix a priori and identify which technique—

NCFlow or POP—is best suited? Such a hybrid scheme would be tremendously appealing

to network operators, since it would present them with a can’t-lose meta-approach that

adapts to the correct situation on its own, without manual intervention. Moreover, the

appeal of such a strategy increases as WAN topologies grow in size, since the traffic on

such WANs will likely grow in complexity.

Applying NCFlow and POP to other TE problems: Forecasting the growth of the WAN

and planning its capacity is a challenging problem for many network operators today; every

decision to add a new link to the WAN is extremely costly and cannot be made lightly.

(This is especially true for intercontinental links that would be constituted of expensive

underwater submarine cables.) Because of the potentially complex interactions between

competing traffic interests on the network, most operators rely heavily on simulations to

identify future bottlenecks in the WAN. But doing so requires a solver that is both very

fast—since so many simulations must be run—and very accurate. Both NCFlow and POP

could potentially meet this criteria, and we are curious how both techniques would perform

in this context. A similar argument exists for failure handling and a litany of other TE

problems, and we are excited to see how our algorithms could be leveraged more broadly

in traffic engineering research.

We conclude this dissertation by noting that the list above is not exhaustive; in fact, it

is anything but. Traffic engineering is a classic problem in computer networking, as old as

the Internet itself. And, because of its timelessness, we are confident that there are many

problems—some known, but many unknown—that are simply waiting to be discovered

and solved. We hope that the contributions we have outlined in this dissertation encourage

future researchers to explore this uncharted territory. And above all else, we hope it leads to

solutions that push forward our collective understanding of networking, traffic engineering,

and computer systems, so that all of us may benefit.



Appendix A

NCFlow

A.1 Properties of NCFlow’s flow allocation algorithm

A.1.1 Proof that the algorithm in §3.3.1 meets demand and capacity
constraints

Satisfying demand constraints: Commodities whose source and target are in the same

cluster are considered by only one instance of MaxClusterFlow; hence, they do not re-

ceive more flow than their demands. Specifically, MaxClusterFlow in Figure 3.4 invokes

MaxFlow which in turn imposes the demand constraints listed in FeasibleFlow; Equa-

tion 2.1.

Commodities whose source and target are in different clusters receive no more flow than

their demand due to SrcTargetMax; observe in Figure 3.4 that one of the four constraints

in SrcTargetMax explicitly controls the flow for such commodities.

Satisfying edge capacity constraints: We say an edge is local to a cluster if both its

incident nodes are within the same cluster. Flow is assigned to a local edge only by the

MaxClusterFlow instance of the cluster that contains that edge. Since MaxClusterFlow

ultimately invokes FeasibleFlow; by Equation 2.1 a local edge is allocated no more than

its capacity.

Edges that are not local receive flow allocation in MaxAggFlow where, as noted in §3.3.1,

all of the edges that lie between a pair of clusters are treated as a single edge whose capacity

110
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MaxAggFlow MaxClusterFlow’s
(green)(yellow)

Figure A.1: Considering the crossing edges between the yellow and green clusters from Figure 3.3;
MaxAggFlow has a single bundle; the yellow and green instances of MaxClusterFlow have one
bundle for each incident node in their cluster.

equals the sum of the capacity of the underlying edges. Thus, the flow assigned to a bundle

of edges by MaxAggFlow is no more than the total capacity of the edges in the bundle.

Subsequently, MaxClusterFlow instances behave similarly; that is, the flow allocated for a

bundle of edges is no more than the capacity of that bundle. For example, Figure A.1 shows

the four edges between the yellow and green clusters in Figure 3.3 as well as the bundles

considered by MaxAggFlow (in the middle) and the two instances of MaxClusterFlow

corresponding to the yellow and green clusters on the right. The later steps in Figure 3.4

do not increase flow and so we conclude that capacity constraints are satisfiable for all

non-local edges.

A.1.2 Proof that the heuristic in §3.3.2 leads to feasible flow allocations

Here, we prove Theorem 1. First, note that the heuristic in §3.3.2 which only restricts

the edges between clusters and paths on the aggregate graph that can be used by some

commodities does not affect the proof in §A.1.1; that is, edges still receive flow less than

their capacity and demand constraints hold.

We now prove that the heuristic will satisfy flow conservation; that is, at any node in

the network, for any commodity which neither originates nor ends at this node, the net flow

is zero, i.e., incoming flow to the node equals the flow leaving that node.

It is easy to see that flow conservation holds for commodities whose source and tar-

get are in the same cluster because only the instance of MaxClusterFlow for that cluster

assigns flow to such a commodity. Since MaxClusterFlow invokes FeasibleFlow in Equa-

tion 2.1, the flow is allocated along paths which start and end at the source and target of

that commodity, respectively. Thus, every node that is neither the source or target will



APPENDIX A. NCFLOW 112

have incoming flow equal to the outgoing flow. Note that flow conservation holds for this

scenario (commodities whose source and target are in the same cluster) even without the

heuristic in §3.3.2.

We now consider the remaining commodities, that is, whose source and target are in

different clusters. In this case, it is possible for nodes to have edges to and from other

clusters. Suppose by contradiction that some commodity k violates flow conservation at

such a node u. The heuristic in §3.3.2 allocates flow for commodity k along only one path

in the aggregated graph and on only one edge between connected clusters. If the cluster

containing u is not on the chosen path or none of the chosen edges are incident on u,

then the net flow allocated for k over all edges incident on u will be zero. Let e be that

one chosen crossing edge incident on u which can receive non-zero flow for commodity

k. Observe that all of the other commodities whose source and target are in the same

clusters as k would also be allocated flow on the same path and edges as k. Thus, all

the flow allocated for these commodities entering or leaving node u as the case may be

would be on edge e. Two instances of MaxClusterFlow, one corresponding to the cluster

that contains u and another corresponding to the other side of edge e, will assign possibly

different flow values for this bundle of commodities on edge e. To conclude our proof, note

that MinPathE2E takes the minimum flow assigned along all such crossing edges e on the

chosen path through the aggregated graph and that SrcTargetMax further breaks open the

bundle to assign feasible flow for each actual commodity contained in the bundle.

If more than one crossing edge or more than one path on the aggregate graph are used

for a commodity, it is easy to see how the above proof will break. The two instances

of MaxClusterFlow that correspond to the clusters on either side of a crossing edge will

be forced by MinPathE2E to only agree on the total volume for the cluster bundle of

commodities for all edges between the pair of clusters; that is, these instances may allocate

different flow on different edges or allocate different flow to individual commodities in the

bundle. Figure 3.6 shows simple examples of such disagreement.
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A.1.3 Proof of optimality for algorithm in §3.3.1 given some sufficient
conditions

Here, we prove Theorem 2. We already discussed in §3.3.3 the case where the number of

clusters, η, is 1 or N , the number of nodes in the graph. To prove optimality for the other

sufficient conditions, we posit a helper theorem.

Theorem 3. Given a set of paths P that can be used by flows, there exists a clustering of

nodes into clusters such that any flow allocated on a set of paths P can also be allocated

by the method in Figure 3.4 over those clusters.

Proof. The claim is trivially true by using N clusters, where each node is in a cluster by

itself. We show that it is possible to use fewer clusters next. Let S be a set of nodes such

that every path in P contains at most one contiguous sequence of the nodes in S. For

example, the set {u, v} satisfies this property if every path in P has neither u nor v, just

u but not v (no repetitions allowed), just v but not u, u → v (no repetitions of u or v

anywhere else in the path) or v → u. Coalescing each such set S into a cluster would allow

the method in Figure 3.4 to allocate the same flow as MaxFlow using the paths in P .

If Gagg is a tree and there is at most one edge between any pair of clusters, any set of

paths P on the actual graph would consist of contiguous segments that are contained within

each cluster. Thus, per the above theorem, any flow allocated by MaxEdgeFlow (Equa-

tion A.4) can also be allocated by the method in Figure 3.4. The only difference then

between the global optimization and the method in Figure 3.4 is that whereas the former

is a single optimization call, the latter is a sequence of optimizations. Since demands are

satisfiable, however, all of the steps in Figure 3.4 will allocate the entirety of demand and

hence will allocate the maximum amount of flow.

Note, in particular, that for the sufficient conditions listed in Theorem 2 a single itera-

tion of the steps in Figure 3.4 suffice.

In §A.7, we show some counter-examples where NCFlow can lead to sub-optimal allo-

cations when any of these sufficient conditions do not hold.
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A.2 Data-plane details for NCFlow

A.2.1 Actions at the NCFlow controller, after each allocation

The SDN controller for NCFlow computes total flow per commodity and some splitting

ratios after each allocation.

Total Flow: The flow assigned to a commodity whose source and target are in different

clusters is read off SrcTargetMax, i.e., f4,k. For intra-cluster commodities, their flow is

read off MaxClusterFlow, i.e., fx2,k at the cluster x that contains the source and target of

commodity k. These flow values are summed up over all the iterations used by NCFlow.

Splitting ratios at sources: At source s of cluster x, we have two cases depending on

whether the target of the commodity is within the cluster x or in some other cluster y.

For the former case, let Pst be the path set to target t for commodity k; the splitting

ratio for each path p in the set is fx,p2,k summed up over all iterations, divided by the total

flow assigned to commodity k above. Here, fx,p2,k is the flow assigned to commodity k on

path p by the MaxClusterFlow instance for cluster x.

For the latter case, let zi be the next cluster on the one path that can receive flow in

iteration i for all traffic going to targets in cluster y. The splitting ratio for path p in the

path set
⋃
iPszi is the value of

∑
r∈Ksy f

x,p
2,r summed up over all iterations where Ksy is the

set of all commodities from source s to targets in cluster y divided by the total value for all

such paths.

Uniquely, note that each source s has a splitting ratio per target twithin the same cluster

or per target cluster y.

We call a subset of nodes as ingresses if they have at least one edge to a node in another

cluster that is chosen by the offline component of NCFlow in §3.3.4 as a crossing edge

Splitting ratios at ingresses are computed in a similar way to the splitting ratios at sources.

At each ingress node w of cluster y for traffic from cluster x, there are two cases depending

on whether the target is some node t in the same cluster as the ingress (y) or in some other

cluster z.

For the former case, in iteration i, the splitting ratio for path p in the set Pwt is the value

of
∑

r∈Kxt f
y,p
2,r in iteration i divided by the total over all such paths. As above, Kxt is the
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set of commodities from sources in cluster x to target t.

For the latter case, in iteration i, let zi be the next cluster on the path to targets in z; the

splitting ratio for path p in the set Pwzi is the value of
∑

r∈Kxz f
y,p
2,r divided by the total value

over all such paths. As above, Kxz is the set of all commodities from sources in cluster x

to targets in cluster z.

Note that an ingress node w has splitting ratios only for commodities whose chosen

path at an iteration contains w’s cluster (y) and whose chosen edge enters y at w.

A.2.2 Details on switch forwarding entries

Pathlets: NCFlow sets up label-switched paths (LSPs) between each pair of nodes in each

cluster. Which paths to setup is pre-determined by the offline component in §3.3.4.

Splitting rules: A source s in cluster x has a splitting rule for each other node in the same

cluster and for each other cluster. The splitting ratios are as computed in §A.2.1.

In each iteration, at each cluster, at most one ingress node is active per pair of other

clusters. This is because the bundle of commodities for a given pair of clusters has at most

one crossing edge entering a cluster.

The active ingress node at a cluster x for the bundle of commodities from cluster y to

cluster z has one splitting rule when z 6= x and one splitting rule per target in cluster x

when z = x.

Packet content: The LSP (which pathlet to use) is encoded in the L2 header [122]. Ad-

ditionally, NCFlow has the following tuple in each packet: (x, y, i, e) where x and y are

the source and target cluster ids, i is the iteration number of the flow allocation that the

packets have been assigned to and e is the edge to leave the current cluster on. The bits

needed are 2 ln η + ln I + ln node degree.1 We note that 16 bits of header space suffice for

all the WAN topologies and experiments considered in this paper; that is η ≤ 64 clusters,

I ≤ 8 iterations and up to 2 edges to nodes in other clusters being used per egress node by

NCFlow.

Data path actions:
1The edge id must suffice to distinguish at an egress node between the edges to a particular next cluster;

so node degree is an overestimate.
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• At source s in cluster x:

– The host or middleware adds the cluster-ids x and y into the packet.

– Source switch uses the appropriate splitting rule to pick a (p, i, e) tuple; the

values e and i are placed in the packet and the L2 header gets the identifier for

path p. To avoid reordering packets in the same TCP flow, traffic can be split

using flow hashes or flowlets [78].

• Each cluster egress removes e from the packet header and forwards packets to the

next-hop of the edge e.

• Each cluster ingress uses the appropriate splitting rule to pick a (p, e) tuple; the value

e is put into the packet header and p determines the identifier in the L2 header.

A.3 Definitions of NoMoreFlow

In the flow vector computed by MaxClusterFlow at a cluster x, fx2 , we use the subscript k

to denote a bundle that may include (1) transit commodities through cluster x (i.e., from all

sources in some other cluster w to targets in some other cluster z), (2) leaving commodities

(i.e., from a source in cluster x to all targets in some other cluster z) or (3) entering com-

modities (i.e., to a target in cluster x from all sources in some other cluster z). Furthermore,

we use the subscript yout to denote the flow allocated for the bundle k on paths to the vir-

tual node that corresponds to the cluster y. Thus, fx2,k,yout
is the flow allocated at cluster x

for all commodities in the per-cluster bundle k on paths to the virtual node corresponding

to a neighboring cluster y.

With this background, Equation A.1 ensures that the flows allocated in MinPathE2E

for an inter-cluster bundle K inDagg on all paths in Pagg that contain a cluster edge (x, y)

is no more than the flow that is allocated at either cluster x or cluster y for their respective

per-cluster bundles that are contained in K to and from each other respectively.

NoMoreAlongPaths(f , f2) , ∀K ∈ Dagg, ∀x, y ∈ Vagg, x 6= y,

∑

p∈Pagg,(x,y)∈p
fpK ≤ min

(∑

k∈K
fx2,k,yout ,

∑

k′∈K
fy2,k′,xin

)
(A.1)
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Equation A.2 is logically similar to Equation A.1 except that the constraints are specific

to a cluster x and the constants and variables have been flipped; that is, here, the flows on

the paths in the aggregate graph are given (fp1,K) and the flow on paths within the cluster are

to be computed by MaxClusterFlow. In particular, note that
∑

p′∈Px,∗yout
fp
′

k , fx2,k,yout
;

that is, the flow assigned in MaxClusterFlow of cluster x on all paths leading to the virtual

node corresponding to a neighbor cluster y is precisely the value on the right that is used

above in Equation A.1.

NoMoreFlowThruCluster(f , f1, x) , ∀K ∈ Dagg, ∀y ∈ Vagg : y 6= x,
∑

p∈Pagg:(y,x)∈p
fp1,K ≥

∑

k∈K, p′∈Px,yin∗
fp
′

k , and

∑

p∈Pagg:(x,y)∈p
fp1,K ≥

∑

k∈K, p′∈Px,∗yout

fp
′

k (A.2)

A.4 Fault Model

When failures happen, prior works [27, 96] assume that the sources of the label switched

paths (LSPs) will proportionally shift traffic. That is, a source that splits traffic in the ratio

of (0.3, 0.5, 0.2) between three paths will change to a splitting ratio of (0.6, 0, 0.4) when

the middle LSP fails. Doing so can cause congestion on either of the remaining LSPs.

The key idea in prior works [27,96] is to proactively allocate flow such that the maximal

load on any link remains under capacity—FFC [96] protects against up to k simultaneous

link failures, whereas TEAVAR [27] ensures that the flow at risk is below a given frac-

tion (e.g., 99.9% of flow can be carried by the network on average over all possible failure

scenarios).

The cost of such congestion protection is two-fold: i) proactive schemes substantially

increase the solution runtime, and ii) they under-allocate flow, since capacity must be set

aside to help with possible failures. Instead, NCFlow uses a reactive strategy, and recom-

putes a new flow allocation after the fault occurs. This enables NCFlow to carry more flow

before the fault, and potentially carry more flow after recovery. Furthermore, since NCFlow

uses fewer FIB entries for the same number of paths, it is naturally easier to spread flow
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onto more paths with NCFlow. Thus, the key trade-off is slightly longer and more lossy

episodes immediately after a fault when using NCFlow versus longer solver runtimes and

flow under-allocation with proactive schemes [27, 96].

A.5 Benchmarking TEAVAR and TEAVAR*

A.5.1 Formulation for TEAVAR*

Here, we discuss our adaptation of TEAVAR to maximize total multi-commodity flow. The

TEAVAR [27] paper considers a different objective – maximizing the concurrent multi-

commodity flow (see Table 2.1). When all demands are satisfiable, both objectives allo-

cate the same flow; however, when not enough capacity is available to meet the desired

failure assurance, maximizing total flow leads to a strictly larger allocation. We describe

TEAVAR* from first principles here.

In addition to the inputs of MaxFlow (see Equation 2.2), TEAVAR* has the following

inputs:

• A value β ∈ [0, 1]; larger values of β correspond to greater fault assurance.

• A set of fault scenarios, S; each scenario i has a probability of occurrence βi and a

set of failed edges Ei.

In a fault scenario i, the edges in Ei will fail and so the flow allocated to paths that

contain any edge in Ei will be lost. The number of possible fault scenarios is exponential in

the number of edges in the network. Thus, to keep the optimization tractable, we consider

only a subset of scenarios.

Let L(i) denote the total flow lost in fault scenario i. Per Proposition 8 in [121],

minimizing the potential function, α + 1
1−βE[Li − α]+, would minimize the conditional

value at risk. Here, the expectation is over all possible fault scenarios. Since we only

consider a subset of fault scenarios to keep optimization tractable, we minimize: α +
1

1−β

(∑
i∈S βi[Li − α]+ + (1−∑i∈S βi)(1− α)

)
. The last term accounts for the uncon-

sidered scenarios for which we must assume the worst possible loss. Note that we can

simplify this expression by dropping the constant 1−
∑
i∈S βi

1−β .
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TEAVAR*(V, E ,D,P, β,S) (A.3)

,argminf

(
α+ 1

1−β
(∑

i∈S βiExcessi − (1−∑i∈S βi)α
))

s.t. f ∈ FeasibleFlow(V, E ,D,P), (Eqn. 2.1)

Li,k ≥ 0, ∀i, k (loss is non-negative)

Li,k ≥ dk −
∑

p∈Pk

fpkActivep,i, ∀i, k (loss)

α ≥ 0 (loss cutoff)

Excessi ≥ 0 ∀i (excess loss in scenario i)

Excessi ≥
∑

k∈D
Li,k − α, ∀i (excess loss)

The formulation for TEAVAR* is in Equation A.3. Recall that fpk is the flow assigned

to demand k on path p. Activep,i is an indicator denoting whether path p is active in fault

scenario i. Thus, the allocation for demand k in scenario iwill be
∑

p∈Pk f
p
kActivep,i.When

the allocation is below the required volume dk, the demand will suffer loss; we use Li,k to

denote the flow loss for demand k in scenario i.

The flow allocation resulting from the above formulation cannot be promised to the

demands; in particular, more flow will be assigned on some paths to account for possible

failures on other paths. After solving the above LP, we compute the flow allocation for a

demand k as follows: (1) sort the per-scenario losses Li,k in ascending order; (2) starting at

index 0, add up the probability of each scenario until the running sum is at least β—let iβ
be the unique crossing index; (3) Set demand k’s flow to be dk − Liβ ,k, the demand minus

the loss at the crossing index.

Choosing the fault scenarios to use in TEAVAR*:

• Intuitively, achieving a greater amount of fault assurance requires considering more

fault scenarios. Specifically, if the total probability of considered scenarios is below

β, the above LP as well as the LP used by TEAVAR become unbounded. To see

why, the coefficient of α in Eqn. A.3 is (
∑
i∈S βi)−β
1−β . If the probability of considered

scenarios is less than β, this coefficient becomes negative, and the objective value

reaches −∞ by setting α to∞.
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• Intuitively, if the total probability of considered scenarios is just larger than β, the

flow allocated to demands is very small. To see why, the smaller the value of
∑

i∈S βi − β, the smaller the positive coefficient of α in the objective of Eqn A.3.

Thus, the solution of Eqn A.3 will have a large value of α and a very small amount

of allocatable flow.

• In light of these two points, in our experiments, we choose all scenarios that are

individually more likely to occur than a cutoff ρ and multiplicatively reduce ρ until

the total probability of considered scenarios exceeds 1− 1−β
2

.

A.5.2 Comments on benchmarking TEAVAR

Observe that the number of scenarios affects the complexity of the TEAVAR* optimization;

specifically, the number of equations and variables increases by |S| ∗ |P|. The path set is

at least as large as the node pairs, i.e., |P| > N2 where N is the number of nodes. The

appropriate choice of fault scenarios to consider, as discussed above, depends on the size of

the topology, the failure probability of edges, and the required assurance level β. Suppose

one considers all 2-edge failure scenarios; then |S| ∼ M2 where M is the number of

edges. Hence, the increase in equations and variables exceeds N2M2. Note that MaxFlow

is substantially simpler, having at most O(N2) variables and constraints (Equation 2.1).

On the topologies listed in Table 3.3, our implementation of TEAVAR* never ran to

completion even after several days. We ran with β = 0.99 and link failure probability

set to 0.004; both of these are the default values used in the open-source implementation.2

The reason is that the optimization problem becomes intractably large. TEAVAR behaves

similarly [27]. We conclude that probabilistic fault protection using this methodology is

infeasible on large topologies and for non-trivial fault assurance levels such as when con-

sidering multiple link failures.

We also note that we are unable to simultaneously achieve the solution quality and the

runtimes that are reported in TEAVAR [27] using their code. Specifically, achieving the

assurance levels reported in their experiments requires many scenarios to be considered.

The runtimes reported in [27] appear to have been measured when considering only single

2https://github.com/manyaghobadi/teavar

https://github.com/manyaghobadi/teavar
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Figure A.2: Breaking down the NCFlow results from Figure 3.10b into four separate CDFs based
on relative total flow.

link failures.

A.6 Additional Experiments

A.6.1 Breakdown of NCFlow’s Performance

To further understand the performance of NCFlow, Figure A.2 breaks down the results

in Figure 3.10 into four ranges based on total relative flow. We plot CDFs of the speedup

ratio per range. The solid blue and green dashed line, which correspond to relative flow

above 0.99 and in [0.8, 0.99) respectively, account for 49% and 46% of all experiments.

The figure shows that NCFlow achieves sizable speedups while allocating large amounts

of flow.

Figure A.3 further breaks down the aggregate results from Figure 3.10 across various

aspects of interest. In the two left-most columns, we break down the results by different set-

tings of α, which illustrates how NCFlow performs on both under-subscribed (α = {1, 8})
and over-subscribed (α = {32, 64, 128}) traffic matrices. In the former case, NCFlow is

typically able to fully satisfy the TM’s requested demand, thereby matching the total flow

allocated by the other methods. At the same time, NCFlow is strictly faster on all TMs,

except for those belonging to smaller topologies (e.g., Uninett2010), which we discuss
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Topology Edge-Based Räcke KSP NCFlow

Total # FIB Entries

PrivateLarge 945,038,502 52,515,090 22,483,244 1,694,027
Kdl 427,524,786 76,794,001 30,199,751 1,876,289
PrivateSmall 7,684,182 1,232,866 625,282 139,346
Cogentco 7,567,952 2,054,323 915,207 139,862
UsCarrier 3,894,542 1,520,821 510,894 82,301
Colt 3,534,912 1,048,779 346,905 67,307
GtsCe 3,263,696 1,077,350 535,135 101,368
TataNld 3,006,720 1,062,629 540,088 93,179
DialtelecomCz 2,590,122 1,427,780 529,663 83,128
Ion 1,922,000 886,414 418,362 71,614
Deltacom 1,417,472 459,159 246,811 53,948
Interoute 1,306,910 483,960 249,979 32,193
Uninett2010 394,346 133,742 57,428 21,185

Maximum # FIB Entries

PrivateLarge 962,361 828,397 313,850 18,124
Kdl 567,009 576,274 309,575 16,926
PrivateSmall 38,809 49,663 21,796 3,639
Cogentco 38,416 60,676 30,601 3,144
UsCarrier 24,649 41,897 17,822 2,234
Colt 23,104 47,077 17,344 3,572
GtsCe 21,904 36,070 15,477 2,748
TataNld 20,736 24,776 13,179 2,104
DialtelecomCz 18,769 34,014 11,084 1,393
Ion 15,376 25,261 12,954 1,387
Deltacom 12,544 25,135 13,029 1,737
Interoute 11,881 14,182 8,346 710
Uninett2010 5,329 8,891 3,626 868

Table A.1: Number of FIB entries for NCFlow vs. edge-based formulations (e.g., Fleischer-Edge),
path-based formulations using Räcke Randomized Routing Trees (SMORE*), and path-based for-
mulations using k-shortest paths (PF4, Fleischer-Path, TEAVAR*) on every topology.

later on. As α increases, so, too, does NCFlow’s runtime advantage; however, this does

come at the cost of the total flow allocated. For example, when α = 32, we see many

instances where NCFlow is > 100× faster than PF4, but allocates 75% of PF4’s total flow
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Figure A.3: A breakdown of the experimental results from Figure 3.10 along various dimensions
of interest: scale factor, traffic model, and topology size. NCFlow excels on large topologies with
TMs that have highly concentrated demands.

in the worst case. This effect becomes more evident for the largest settings of α: here, the

speedups are > 1000×, but more flow is sacrificed for some TMs. This behavior occurs

perhaps because, as the traffic volume increases and the topology becomes more congested,

paths that are not allowed by NCFlow’s scheme become more critical for maximizing the

total flow.

In the middle two columns, we break down the results by traffic model. NCFlow tends

to perform best when demands are highly concentrated within clusters. In the bottom mid-

dle plot (Poisson, δ → 0), we see that NCFlow allocates > 90% of PF4’s total flow for

almost every TM, while still achieving speedups > 100×. Recall that as δ → 0 in the
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Poisson traffic model, the traffic volume between clusters decreases, thus generating con-

centrated demands. In contrast, when δ → 1, demands are less concentrated, which leads

to worse performance for NCFlow in terms of total flow, but not in terms of runtime.

Finally, in the two right-most columns, we break down the results by topology size. On

Uninett2010, the smallest topology in our evaluation set, NCFlow’s trade-off between total

flow and runtime is not much better than the other baselines, particularly Fleischer-Edge.

As the topology size increases, NCFlow’s advantage becomes more apparent. On Colt,

NCFlow offers faster runtimes and sacrifices little flow, no more than 10% less than PF4.

On PrivateSmall and Kdl, NCFlow’s speedup increases even more: > 100× faster than

PF4 on the majority of cases on Kdl. But flow is sacrificed, particularly for large values of

α. However, NCFlow’s trade-off is still favorable compared to other methods: for Kdl, we

see multiple instances where NCFlow achieves 1,000× speedups at only a 20% reduction

in flow. For PrivateLarge, we see both the biggest speedups and the smallest fraction of

total flow relative to PF4. As previously discussed, the outlier coincides with a highly over-

subscribed TM (α = 128). When we move to other regimes on PrivateLarge, NCFlow’s

performance improves: on 31 of the 400 TMs with α ∈ {32, 64}, NCFlow is > 1, 000×
faster than PF4 while achieving > 80% of PF4’s total flow.

In summary, we can see in this panel of CDF plots where NCFlow’s strengths lie: on i)

large topologies, and ii) TMs with moderate demands that are highly concentrated within

the topology.

A.6.2 Alternate clustering methods

For each topology, we evaluate the three different clustering techniques mentioned in §3.3.4;

on each topology we ask each technique to compute the number of clusters listed in Ta-

ble 3.3. Figure A.4 shows CDFs of the ratio of total flow and latency speed-up of a clus-

tering technique relative to that achieved by using FMPartitioning; thus values to the left

of x = 1 indicate worse performance compared to FMPartitioning while those on the right

indicate better performance. The figure shows that clusters discovered by FM partitioning

almost always let NCFlow carry more flow (red lines); using either spectral clustering or

leader election leads to a noticeably smaller allocation in about 20% and 40% of the cases.
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Figure A.4: Comparing the total flow allocated and the speedup in computing allocations when clus-
ters are chosen using the three techniques mentioned in §3.3.4: FMPartitioning, Spectral Cluster-
ing and Leader Election. FMPartitioning, the default technique used in our evaluation, generally
performs better, but not in all cases.

The figure shows a less clear-cut separation on latency speed-up; clusters discovered by

leader election offer more speedup in over 30% of the experiments. Overall, we see that

FMPartitioning performs better on average but not in all cases.

A.6.3 Effect on path latency

Figure A.5 shows a CDF of the normalized path latency for commodities3 under different

flow allocations. The figure on the top shows CDFs of the actual normalized path latency.

Observe that these distributions are nearly identical. The figure on the bottom shows a CDF

of the ratio of normalized latency; we see that roughly 70% of the commodities are carried

by NCFlow on paths that are at most as long as the paths used by PF4 (i.e., to the left of

x=1). Most of the cases where NCFlow uses relatively longer paths are for commodities

that have very small latency paths as illustrated by the top figure.

Note that path latency can be further explicitly controlled in NCFlow by determining

3The latency of the paths along which each commodity is routed weighted by the fraction of the com-
modity routed along each path. That is, if a commodity is divided equally between two paths, the normalized
latency will be the average of the path latencies.
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Figure A.5: Effect of NCFlow on path latency

which paths can be used or by weighting the objective to prefer shorter paths in the various

steps of Figure 3.4.

A.6.4 Alternate path choices

With Figures A.6 to Figure A.10, we evaluate different numbers of paths between node

pairs chosen with or without edge disjointness. PFk refers to path formulation with k

shortest paths chosen using edge disjointness and PFknd indicates paths chosen without

edge disjointness. Comparing these figures with Figure 3.10, we note that NCFlow’s im-

provements over baselines hold across different path choices.

Note that Figure A.9 and Figure A.10 are missing some of the larger topologies listed

in Table 3.3 for some of the baseline schemes because the baselines ran out of memory (we

used a server with up to 3TB of memory) or raised some other exception.

A.7 Illustrative examples

Here, we show some illustrative examples where applying NCFlow using adversarially

chosen clusters can lead to sub-optimal flow allocation.
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Figure A.6: Similarly to Figure 3.10 all schemes use up to k = 4 shortest paths between each pair
of nodes except that the paths are chosen without ensuring edge disjointness. The figure shows no
qualitative difference relative to Figure 3.10.
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Figure A.7: Similar to Figure 3.10, except all schemes use up to k = 8 shortest paths between
each pair of nodes; paths chosen with edge disjointness. The figure shows no qualitative difference
relative to Figure 3.10.

Figure A.11 shows a case wherein NCFlow is sub-optimal because the aggregate graph

(wherein nodes are clusters) is not a tree. The network topology and optimal allocations

are shown in the graph on the left; assume each link has a unit capacity. With NCFlow, as

shown in the figures on the right, MaxAggFlow can route the flow from s1 to t1 on either

the top or the bottom path or divide between the two paths in some proportion; note that

MaxAggFlow is not aware of demands that are local to a cluster (such as the flow from s2

to t2). Whenever MaxAggFlow assigns non-zero flow for the s1 → t1 demand on the top

path, NCFlow will be sub-optimal because then the other demand cannot be fully satisfied

when MaxClusterFlow executes later on the yellow cluster. Any unsatisfied volume for

s1 → t1 can be routed on the bottom path in a later iteration but the flow for s2 → t2 will

not increase since the links that demand can use are fully utilized in the first iteration. The
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Figure A.8: Similar to Figure 3.10 except all schemes use up to k = 8 shortest paths between each
pair of nodes; paths chosen without ensuring edge disjointness. The figure shows no qualitative
difference relative to Figure 3.10.
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Figure A.9: Similar to Figure 3.10 except all schemes use up to k = 16 shortest paths between
each pair of nodes; paths chosen with ensuring edge disjointness. The figure shows no qualitative
difference relative to Figure 3.10.

root of the problem here is that MaxAggFlow allocates traffic over multiple paths without

being aware of the demands within clusters.

Figure A.12 shows a case wherein NCFlow is sub-optimal when demands cannot be

fully satisfied. As above, the topology and optimal allocations are shown on the left. Also,

as above, the root of the issue here is that MaxAggFlow allocates the cross-cluster flow

on the aggregate graph without being aware of the demands within clusters. As shown,

subsequently, MaxClusterFlow will under-allocate flow for the local demands even though

total flow would be larger if the local demands are fully satisfied.

Reordering the sub-problems, i.e., executing MaxClusterFlow before MaxAggFlow,

may appear promising based on these examples but simple counter-examples exist even

for such a reordered solution. The underlying cause of sub-optimality is not the order in
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Figure A.10: Similar to Figure 3.10 except all schemes use up to k = 16 shortest paths between
each pair of nodes; paths chosen without ensuring edge disjointness. The figure shows no qualitative
difference relative to Figure 3.10.
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Figure A.11: Sub-optimality of NCFlow when the aggregate graph is not a tree.

which the global and local solutions are computed but rather that the optimal flow allocation

requires jointly solving these problems.

Figure A.13 shows a case wherein NCFlow can be sub-optimal when multiple edges

connect clusters. As above, each unmarked link has unit capacity and the optimal alloca-

tions are shown in blue. Recall that NCFlow uses exactly one edge between each pair of

clusters per iteration to avoid disagreements. There are two edges between each cluster but

among the four possible crossing edge choices in an iteration, exactly one choice can carry

non-trivial amount of flow (the top edge for each cluster pair). If that choice is somehow

not picked, as shown marked in red on the right in Figure A.13, NCFlow will not satisfy
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Figure A.13: Sub-optimality of NCFlow when there are multiple edges between pairs of clusters.

the demand. Simply increasing the number of iterations may not suffice either since the

number of edge choices can be large, depending on the path lengths on the aggregate graph

and on the number of edges between clusters.

As noted previously, the above examples are in part due to poor cluster choices; Fig-

ure A.14 shows different cluster choices for these examples under which NCFlow will lead

to optimal flow allocation.

A.8 Optimality gap

In this section, we analyze the gap in optimality between NCFlow and the best possible

flow allocation for a hypothetical topology and traffic matrix.
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a different clustering
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(b) For the sub-optimality problem
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flow allocation with NCFlow.

Figure A.14: Alternate clustering choices that fix sub-optimality concerns and disagreements.

A.8.1 Optimal MaxEdgeFlow

The optimal flow allocation algorithm, in terms of carrying the maximum amount of flow

possible on a network, is as shown in Equation A.4. We will call this the EF, short for Max

Edge Flow. Some additional notation is in Table A.2. Observe that, in this formulation,

any demand can be allocated on any edge (the variable fke) as long as flow conservation

holds (the longer equation at the bottom). As noted in §3.2, this edge formulation of the

problem carries the maximal amount of flow but has a high computation time and requires

a large number of forwarding entries at switches (one rule per node pair at each node).

MaxEdgeFlow(V, E ,D) , argmax
f

∑

k∈D
fk s.t. (A.4)

f =
{
fke | ∀k ∈ D, e ∈ E

}
and

fke ≥ 0 ∀e ∈ E , k ∈ D (non-negative flow)

fk ≤ dk, ∀k ∈ D (below volume)
∑

∀k,e
fke ≤ ce, ∀e ∈ E (below capacity)

∑

e,ue=u

fke −
∑

e,ve=u

fke =





fk if u = sk

−fk if u = tk

0 o/w.

∀k ∈ D, u ∈ V (flow cnsrvtn.)
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ue, ve ∈ V Edge e ∈ E goes from node ue to node ve

mu,∀u ∈ V mu denotes the cluster containing node u. Note that mu ∈ Vagg
(i.e., the cluster is a node on the aggregate graph) and u ∈ Vmu
(i.e., the node u belongs in the restricted graph for the mu’th clus-
ter)

∀k ∈ D,msk 6= mtk , x ∈ Vagg

OutNodes(x, k) The nodes in cluster x that can carry flow of demand k out to some
other cluster, i.e., {u | mu = x,∃v ∈ V , p ∈ Pagg,Ksktk s. t. mv =
y, (x, y) ∈ p, (u, v) ∈ E}

InNodes(x, k) The nodes in cluster x that can carry flow of demand k into clus-
ter x, i.e., {u | mu = x, ∃v ∈ V , p ∈ Pagg,Ksktk s. t. mv =
y, (y, x) ∈ p, (v, u) ∈ E}

Table A.2: Additional notation for optimality gap; builds on top of notation from Table 2.1 and Ta-
ble 3.1.

A.8.2 Edge flow with cluster constraints

Relative to the optimal MaxEdgeFlow, we first ask how much flow will be lost by using

clusters. To compute this value, we add to MaxEdgeFlow the constraint shown in Equa-

tion A.5. Specifically, demands whose source and target are in the same cluster can only

use edges within the cluster. However, as above, paths remain otherwise unconstrained.

fke = 0 ∀e, ue /∈ Vx or ve /∈ Vx, if msk = mtk = x. (A.5)

We will call this optimization problem EF with cluster constraints.

A.8.3 Path form with cluster and path constraints

Next, we ask how much flow will be lost when using the clusters as well as the given set

of paths within and between clusters? Computing this value is somewhat more complex

because we have to stitch together the flow carried on paths within each cluster with the

flow on the edges between clusters while also ensuring that flow follow the chosen paths on
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the aggregate graph (where clusters are nodes). For reference, we write this out in Equa-

tion A.6.

In more detail, this optimization problem, as shown in Equation A.6, has three classes

of decision variables – fpK , f
p
k , fke – which respectively are the flow allocated to a bundled

demand on a path on the aggregate graph, the flow allocated to a demand on a path within

a cluster and the flow allocated to a demand on a crossing edge between clusters.

Equation A.7 computes the net flow for each demand k which for the case of a demand

whose source and target are in the same cluster is the sum of flow carried on all intra-cluster

paths. For demands whose source and target are in different clusters, the net flow is the flow

from the demand’s source to all of the nodes in the source’s cluster that connect with other

clusters as well as the flow to the demand’s target from all of the nodes in the target’s cluster

that connect with other clusters.

For flow conservation, consider Equation A.9 which ensures that all of the flow leaving

at a node u for a demand k on crossing edges to other clusters equals the flow that comes

into the node u either from the source of the demand (if the source is within its cluster) or

from all of the nodes in u’s cluster that can receive flow for demand k from other clusters–

InNodes(mu, k). Equation A.10 considers the converse case for demands that leave at a

node. Finally, Equation A.11 relates the total flow between a pair of clusters x, y on the

crossing edges between these clusters with the flow along paths on the aggregate graph that

contain the edge (x, y). We will call this optimization problem PF with cluster and path

constraints.
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MaxClusterPathFlow(V, E,D,P) , argmax
f

∑
k∈D

fk s.t. (A.6)

f =
{
fpK | ∀K ∈ Dagg, p ∈ Pagg, (flow on inter-cluster paths)

fpk | ∀k ∈ D, p ∈ P, (flow on intra-cluster paths)

fke | ∀k ∈ D, e ∈ E,mue 6= mve (flow on edges between clusters)
}

and

fk =



∑
p∈Psk,tk

fpk if msk = mtk (flow within a cluster)∑
t∈OutNodes(msk

,k)

∑
p∈Psk,t

fpk if msk 6= mtk (flow from source to outnodes)

∑
s∈InNodes(mtk

,k)

∑
p∈Ps,tk

fpk if msk 6= mtk (flow to target from innodes)

∀k ∈ D(net flow)

(A.7)

fk ≤ dk(flow below volume) ∀k ∈ D

ce ≥


∑
k∈D

∑
p∈P, p3e

fpk if mue = mve (intra-cluster edges; note: k goes over all demands)∑
k∈D

fke otherwise (inter-cluster edges)
∀e ∈ E,

(A.8)

∑
e∈E|ue=u, mue 6=mve

fke =


∑

p∈Psku

fpk if mu = msk (at cluster mu, flow from sk to u)∑
v∈InNodes(mu,k)

∑
p∈Pv,u

fpk otherwise (at cluster mu, flow from all InNodes to u)
∀u ∈ V, k ∈ D

(A.9)

∑
e∈E|ve=u, mue 6=mve

fke =


∑

p∈Pu,tk

fpk if mu = mtk (at cluster mu, flow from u to tk)∑
v∈OutNodes(mu,k)

∑
p∈Pu,v

fpk otherwise (at cluster mu, flow from u to all OutNodes)
∀u ∈ V, k ∈ D

(A.10)∑
p∈Pagg|(x,y)∈p

fpK =
∑

e|mue=x, mve=y, k∈K
fke ∀K ∈ Dagg, x, y ∈ Vagg (flow b/w clusters = flow on inter-cluster path)

(A.11)
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Figure A.15: Comparing flow allocated by NCFlow with the best possible flows

Note that the above constraints naturally lead to a reduction in forwarding table size as

discussed in §3.3.5. However, it is not clear how much less flow these constraints allow

for relative to the optimal EF. Moreover, since this optimization has more variables (and

constraints) than PF4 (see Equation 2.2), it can take longer to compute and may not be

practically useful. We use this optimization problem to discern how much flow is lost by

the constraints used in NCFlow (restricting to clusters and paths) relative to the flow that is

lost due to the heuristic allocation process described in §3.3.

A.8.4 Experimental results

Our results are in Figure A.15; the baseline is PF4 and the figures plot CDFs of total

flow and latency speedup for many topologies and traffic demands. Note that using the

edge formulation (purple dash-dots) often leads to substantially more flow being allocated

compared to PF4; however, as the figure on the top shows, edge formulation is a more



APPENDIX A. NCFLOW 136

complex problem that takes longer to run (over 1000× longer).

Adding the clustering constraint to edge formulation has an un-noticeable effect on the

flow allocation (green dashes). Note that we use clusters computed using FMPartitioning

for all topologies.

Constraining the path formulation using both the given clusters and the given paths (be-

tween clusters and within each cluster), as shown with the red dash line, allocates much

more flow than PF4 and not much less than is allocated in edge formulation. Thus, empir-

ically, constraining flow allocation to traverse the chosen clusters and paths does not limit

the flow that can be allocated. The figure also shows that computing the optimal flow given

clusters and paths takes longer than PF4 (roughly 10× – 100× longer). Thus, NCFlow

offers a heuristic which finishes substantially faster than PF4.

To sum up, our two main contributions are:

• constraining flow allocations to use specific clusters and paths which reduces the

number of forwarding table entries needed without affecting the flow that can be

allocated

• a heuristic that computes flow allocations quickly given this constraint but can under-

allocate flow

We believe that future work can improve the heuristic to reduce the flow loss further.



Appendix B

POP

B.1 Proof of Bound on Random Partitioning for Simple

Allocation Problem

In this section, we show a full derivation of Equation 6.2, which upper bounds the proba-

bility of a large gap between the optimal solution and solution returned by POP.

To quantify the gap between POP and optimal solutions, we need a sense of how big qs,t
– the number of misplaced jobs of type s in sub-problem t – is in practice. In this section,

we assume that the number of resources of each type are not necessarily equal; we define

ns as the number of resources of type s. We can compute a probabilistic upper bound on

qs,t using a classical Chernoff bound, interpreting the random assignment of all type-s jobs

(ns of them) to sub-problems as Bernoulli trials where the probability that any given type-r

job is placed in sub-problem l is 1/l. Define Xs,t to be the sum of all such trials, i.e., the

number of type-s jobs in sub-problem t, with E[Xs,t] = ns/l. Note that when Xs,t exceeds

the expected value, we get Xs,t = ns/l+ qs,t. The Chernoff upper bound [100] can then be

used to find the upper limit on the probability that the value of Xs,t exceeds the expected

137
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value by a fraction δ:

Pr[Xs,t ≥ (1 + δ)ns/l] = Pr[qs,t ≥ δns/l]

≤ exp

( −δ2ns
(2 + δ)l

)
(B.1)

In the rest of this text, to simplify notation, we will refer to the RHS of Equation B.1

as C(δ, ns, l). For a simple problem with r = 2 and l = 2, if we have n = m = 105 jobs

and resources split equally across resource types, the probability of exceeding the expected

amount of type A jobs in a given sub-problem by 1% is 0.2877, by 2% is 0.00694, and by

3% is 0.0000145.

This bound can be extended to misplaced jobs across all resource types and sub-problems

using the union bound, i.e., Pr(Z1 ∨Z2) ≤ Pr(Z1) + Pr(Z2). This can be used to compute

an upper limit on the probability that any resource type exceeds its expectation by a fraction

(1 + δ) on any sub-problem. Define Ys,t to be the event that type-r jobs in sub-problem l

are in excess of the expected amount by a factor of (1 + δ), i.e., Xs,t ≥ (1 + δ)ns/l. Then,

we see that the following holds:

Pr[Ys,1 ∨ ... ∨ Ys,l] ≤
l∑

t=1

Pr[Yt] ≤
l∑

t=1

C(δ, ns, l) (B.2)

We can extend this to all resource types similarly. Let Zr be the probability that type-

s jobs in any sub-problem l exceeds (1 + δ)ns/l. Using the union bound again, we can

extend Equation B.2 to compute the upper limit on the probability that the total number of

misplaced jobs exceeds δn.

Pr

[
r∑

s=1

l∑

t=1

qs,t ≥ δn

]
≤ Pr[Z1 ∨ ... ∨ ZR]

≤
r∑

s=1

Pr[Zj] ≤
r∑

s=1

l∑

t=1

C(δ, ns, l) (B.3)

We can now combine this with Equation 6.1 to bound the performance of a randomized

POP solution for the simplified allocation problem discussed in §6.7.1. We define Γ∗ to be
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an optimal allocation, ΓPOP to be the allocation returned by the POP procedure, and U() :

Γ → u to be a function that computes the utility of an allocation Γ. Using Equations 6.1

and B.3, the probability that a random job partition will result in a utility that is greater than

δumaxgapn from optimal is:

Pr[U(Γ∗)− U(ΓPOP) ≥ δumaxgapn]

≤ Pr

[
r∑

s=1

l∑

t=1

qs,tumaxgap ≥ δumaxgapn

]

≤
r∑

s=1

l∑

t=1

C(δ, ns, l)
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