EFFICIENT OPTIMIZATION TECHNIQUES
FOR TRAFFIC ENGINEERING

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Firas Abuzaid
August 2022

© 2022 by Firas Maher Abuzaid. All Rights Reserved.
Re-distributed by Stanford University under license with the author.

Thiswork islicensed under a Creative Commons Attribution-

‘@ @ @ \ Noncommercia 3.0 United States License.
http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: https://purl.stanford.edu/nj221cf1818

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
https://purl.stanford.edu/nj221cf1818

| certify that | have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Matei Zaharia, Primary Adviser

| certify that | have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Peter Bailis, Co-Adviser

| certify that | have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Balaji Prabhakar

Approved for the Stanford University Committee on Graduate Studies.
Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format.

Abstract

Many enterprises today manage their Internet traffic on their wide-area networks (WAN’)
using centralized, software-defined traffic engineering (TE) schemes. These schemes, how-
ever, scale poorly with network size; as the network grows, the runtimes required to deter-
mine flows on the network scale super-linearly. In response, network operators often fall
back on simple heuristics to meet their SLAs. Unfortunately, these heuristics come at the
expense of optimality: they lead to inexact, approximate solutions that can lead to poor
utilization on the network. The status quo is thus a difficult trade-off: fast solutions that are
significantly sub-optimal, or optimal solutions that are too slow.

However, these WAN topologies can be partitioned, either geographically or by their
resources (i.e., their commodities and link capacities). We analyze real-world traffic from
the Microsoft Azure WAN and demonstrate that its traffic is often clustered; this insight
motivates us to leverage partitioning to design novel, more scalable algorithms for traf-
fic engineering. Finding a valid partitioning is non-trivial, because we must adhere to the
constraints of the original traffic engineering problem, such as demand constraints and ca-
pacity constraints. At the same time, the partitioning cannot be designed poorly; otherwise
it could yield substantial approximation errors in the resultant flow allocations. We show
that, by cleverly designing our partitioning strategies, we can develop algorithms that pro-
vide a better trade-off between runtime and optimality.

First, we propose NCFlow, which builds off of the geographic partitioning strategy.
Instead of solving a global flow problem on the entire WAN, NCFlow solves i) a simpler
problem on a contraction of the network, and ii) a set of sub-problems in parallel on disjoint
clusters within the network. Our results on the topology and demands from the Microsoft

Azure WAN, as well as on publicly available topologies, show that NCFlow nearly matches

v

the solution quality of currently deployed solutions for the maximum total flow objective
(99.1% of optimality in the median case), but is 11x faster than the state of the art, with
maximum observed speedups of 1,900x. Moreover, NCFlow outperforms other heuristics
and approximation methods and realizes a better trade-off between optimality and runtime.

Second, we propose POP, an alternative algorithm that leverages commodity-based
partitioning. This approach exploits the Law of Large Numbers and randomly splits the TE
problem into smaller, independent sub-problems: each sub-problem executes the original
flow problem on the same topology, but with a fraction of the WAN’s link capacities, as
well as a subset of the commodities. We demonstrate that, by reusing the original flow
problem, POP can generalize to many TE objectives, not just maximum total flow. We also
provide theoretical and empirical evidence to justify random partitioning as an effective
strategy. In our experiments across the same set of topologies and demands, we show that,
in the median case, POP realizes 99.9% of the optimal solution, but is 18 x faster than the
state of the art, with maximum observed speedups of 98 x.

In the third part of this dissertation, we compare and contrast NCFlow and POP and
discuss their relative strengths and weaknesses. We show that NCFlow excels when the
optimal approach requires a small subset of the commodities to take all the capacity, which
directly contrasts with POP. Finally, we conclude by discussing how POP can be applied
to problems beyond traffic engineering and extend to other large-scale computer systems

problems, such as cluster scheduling and load balancing.

Acknowledgements

“Not all those who wander are lost” — J.R.R. Tolkien

It may sound cliché, but the Ph.D. is truly a journey, in every sense of the word. The work
over the past seven years that ultimately culminated in this document has been long and
arduous, with many ups and downs. There were periods of wandering, during which I did
feel lost. To be candid, I often wondered during those periods whether or not I would make
it to the finish line.

Now that the end is in sight, I find the quote above to be particularly appropriate. I
realize that this insight—that those who wander are not necessarily lost—is probably the
most valuable lesson I have learned from my experience as a Ph.D. student. And, above all
else, I am deeply grateful to every person along the way who has helped me find my way
and finally reach the end of this rewarding journey.

First and foremost, I owe an enormous debt of gratitude to my advisors, Peter Bailis
and Matei Zaharia, as well as Samuel Madden, one of my original advisors. Without them,
I wouldn’t have even been able to start this journey, much less complete it. When I first
began the Ph.D., I was a student at MIT, not Stanford, advised by both Matei and Sam.
As it just so happened, Sam had invited a recent graduate from UC Berkeley to take a
postdoctoral position in his group: Peter.

As soon as I began working with him, I understood that I had found a special mentor.
Peter was, simply put, the most enthusiastic person I had ever met in real life—he was
Tony Robbins with a doctorate degree in Computer Science. His enthusiasm was conta-
gious; when I worked with him, I would immediately notice how much my own motivation

increased simply by being in his presence. He showed me that passion is actually a skill,

Vi

that it can be honed and cultivated, just like any other talent, and I have tried to take that
lesson with me in all of my other endeavors in life. Peter taught me many valuable lessons
about the art of research, but the most critical lesson he passed on to me was much more
fundamental: the importance of taking care of myself. When I started my Ph.D., I began to
struggle with a lot of daily stress and anxiety. Peter noticed this and made a suggestion that
changed my life: he recommended that I see a mental health therapist. With his encour-
agement (and despite my trepidation), I made an appointment with a counselor the very
next week, and I haven’t looked back ever since—it has certainly improved my life beyond
measure. Thank you, Peter, for making me a better researcher and a healthier, happier
person.

Matei has been an incredible research mentor to me throughout my entire journey. He
has been insightful, patient, and wise every step of the way. While Peter exuded energy,
Matei was always zen, and I can’t thank them enough for establishing this happy medium
for me. I must confess that I had a bit of a wandering eye during my Ph.D.; I strug-
gled to pick a single topic and stick to it. Ultimately, my dithering probably slowed me
down, but Matei was supportive through thick and thin. No matter what research topic I
picked—whether it was systems and machine learning, data analytics, artificial intelligence
in medicine, or (finally) computer networking—he was always willing to dive in. More-
over, he always had a good idea up his sleeve, a nugget of wisdom or unique perspective
into the problem that he could share. His breadth of knowledge is truly remarkable, and he
has served as an examplar for me in that regard. And, despite this brilliance, Matei has also
been arguably the most humble person I have ever worked with. Unfortunately, brilliance
and humility do not go hand in hand in our society, and we accept that trade-off as a de
facto rule of human nature. Matei has proven to be the exception to that rule, and I am
truly, truly grateful for that. I am extremely lucky that I was able to work with him over
these past seven years.

I am grateful to Balaji Prabhakar, Keith Winstein, and Stephen Boyd for serving on my
defense committee and improving my research in the process. Balaji was kind enough to
invite me to present some of my work to his research group in 2020, and he also served
on my reading committee for this dissertation. Keith provided me with excellent feedback

when [first proposed my thesis, and I have long admired his incisiveness and mental clarity

vii

when discussing networking, computer systems, or, frankly, any other topic. (If you ever
get the chance, just ask him about emojis. I promise that you won’t be disappointed.)
Stephen chaired my defense, but he was also a co-author on one of the papers featured in
this dissertation. His zeal for research and depth of expertise has always been inspirational
to me, to say the least.

In 2019, during one of those moments when I was wandering in the wilderness, I de-
cided to apply for an internship at Microsoft Research. On the receiving end of that appli-
cation was Srikanth Kandula, who, for some reason, was willing to take a massive risk on
a student who had no research experience in computer networking whatsoever. To this day,
I still do not know why he agreed to take me on; all I know is that it turned out to be one
of the best things that ever happened to me during my Ph.D. Srikanth helped me rediscover
my passion for research—he lit a fire under me that summer that I desperately needed. We
spent hours together pair programming at his desk and even longer at the whiteboard, dis-
secting our proposed algorithms well into the night to anticipate what could go wrong. I had
a front-row seat to observe all the traits that constitute an excellent researcher: a breadth
of knowledge that spanned theory to systems and everything in between; a meticulousness
that both left me in awe and drove me insane; and an indefatigable work ethic that never
waned, no matter how challenging the situation was. Most of all, he forced me—in a good
way—to expand my abilities as a researcher; he challenged me to really own my research.
Prior to that summer internship, I was often plagued by self-doubt in my research abilities.
Srikanth provided me with the confidence I needed to evolve as a researcher and finally
take on that sense of ownership I was lacking. After that wonderful summer, I continued
to work with him remotely from Stanford, and we even reconnected in person for a three-
week working session in early 2020, right before the pandemic began. Needless to say, he
features prominently in the work presented in this dissertation. Thank you, Srikanth, for
being such a brilliant mentor to me. I only wish we had begun working together sooner.

While at Microsoft, I was also fortunate enough to work with Behnaz Arzani and Ishai
Menache, both of whom were excellent collaborators and co-authors. Behnaz was excep-
tionally sharp in all of our brainstorming sessions, and I always appreciated her ability and
willingness to dive deep with me into the nitty-gritty of the mathematical optimization liter-

ature, which helped me get up to speed on a new research topic that I had no experience in.

viii

Her unique expertise enriched our work and took it the next level. Ishai was the seasoned
sage of our collaboration, and he always helped me understand how our work fit into the
broader picture in computer networking. He was always able to find connections to other
related work and articulate the subtle nuances to me, which also accelerated my onboarding
into this new field. Most importantly, both Behnaz and Ishai were excellent colleagues to
me that summer, amiable and approachable from day one. Thank you both so much for
making me feel at home in Building 99; your hospitality will not be forgotten.

I would like to thank my many collaborators and co-authors, without whom the work
in this dissertation would certainly have not been realized. A heartfelt thank you to Ak-
shay Agrawal, Albert Rogers, Ameet Talwalkar, Andrew Feng, Anojan Selvalingam, Asvin
Ananthanarayan, Atul Shenoy, Behnaz Arzani, Ce Zhang, Cesare Corrado, Christian Meyer,
Christopher Ré, Daniel Kang, David Krummen, Deepak Narayanan, Edward Gan, Eric
Xu, Erik Meijer, Feynman Liang, Fiodar Kazhamiaka, Geet Sethi, Ishai Menache, Jeff
Naughton, Jialin Ding, John Emmons, John Sheu, Joseph Bradley, Junaid Zaman, Kexin
Rong, Lee Yang, Mahmood Alhusseini, Matei Zaharia, Paul Clopton, Paul Wang, Pe-
ter Bailis, Peter Kraft, Sahaana Suri, Samuel Madden, Sanjiv Narayan, Shoumik Palkar,
Srikanth Kandula, Stefan Hadjis, Stephen Boyd, Steven Niederer, Tina Baykaner, Wayne
Giles, Wouter-Jan Rappel, and Xi Wu.

Thank you to my friends outside of work for providing me with a spark of joy when-
ever | needed it the most and keeping me sane in the process: Abdallah AbuHashem,
Abdul-Kareem Agunbiade, Abi Raja, Adil Kalam, Ahmad Ibrahim, Al-Karim Lalani, Al-
borz Bejnood, Amine Mhedhbi, Anum Afzal, Ayesha Rasheed, Cyrus Pinto, Dahlia Fateen,
Eyuel Tessema, Farah Ereiqat, Fatima Wagdy, Galym Imanbayev, Hosniya Zarabi, Ibrahim
Elshamy, Jared Quincy Davis, Joe Maguire, John Emmons, Kamil Saeid, Khalil Ramadi,
Mahmood AlHusseini, Malak Abu Sharkh, Mehmet Seflek, Michael Gummelt, Moham-
mad Usama “Juni” Khalil, Mohamed Farid, Mohammed Elasmai, Naser Dehaibi, Natalie
Jabbar, Navid Chowdhury, Nishant Jacob, Omair Khan, Omar Shakir, Osama El-Gabalawy,
Paroma Varma, Pukar Hamal, Rafid Sikder, Salahodeen Abdul-Kafi, Saleh Abbas, Samer
Bu Jawdeh, Sanna Ali, Sarah Rangwala, Sophia Nguyen, Sughra Ahmed, Umayah Ab-
dennabi, Yasmin Chebbi, Yifei Huang, Yuliya Mykhaylovska, Zaid Adhami, and many

countless others.

ix

When I moved from MIT to Stanford, I did not realize that I was joining a new research
group called FutureData, led by both Peter and Matei. At the time, it was just a handful
of second-year students that occupied a single office. But, even from its infancy, the group
has always been welcoming and warm to everyone, which I have always deeply appre-
ciated. The lab’s unique culture is a primary reason why, today, it showcases a breadth
of expertise—f{rom machine learning to systems, theory to practice—that is quite rare in
academia. I have been fortunate enough to work with Cody Coleman, Daniel Kang, Deepti
Raghavan, Edward Gan, Fiodar Kazhamiaka, Gina Yuan, Jialin Ding, Kai Sheng Tai, Ke-
shav Santhanam, Kexin Rong (my MSR officemate for the summer!), Omar Khattab, Peter
Kraft, Sahaana Suri, and Trevor Gale in various capacities over the last seven years. Thank
you all for the wisdom and knowledge you shared with me, the trenchant feedback you gave
me on my research, and the delightful ski trips and overseas adventures we had together at
various conferences. Even though the Ph.D. is a solo journey, it was always comforting to
know that you were also charting your own path next to me, side by side.

It is difficult to put into words how much my officemates in Gates 432 have meant to me
over these last seven years. Deepak Narayanan, Shoumik Palkar, and James Thomas were
more than colleagues to me—they were true friends, the best friends a struggling Ph.D.
student could ever ask for. When I reflect back on our time together, my mind always goes
back to a famous line from The Office: “I wish there was a way to know you’re in ‘the
good old days’ before you’ve actually left them.” Alas, those “good old days” are behind
us, but I do have a treasure trove of invaluable memories from our time in 432 that always
brings a smile to my face. I will never forget the hilarious hijinks we conducted in that
office: Shoumik accidentally crashing his toy drone into the corner; James pacing around
the room, twirling his pen, rapping under his breath whatever hip-hop lyrics were en vogue
at the time; Deepak finishing up his hard day’s worth of labor, closing his terminal, then
peeling his fifth banana of the day and tuning in to watch the Boston Red Sox game. Most
of all, I’ll never forget the laughter—how often we laughed, how loud we laughed, how
much we annoyed our neighbors with our incessant laughing. (Sorry about that!) Thank
you so much for always brightening my day over these last seven years, even during the
toughest times that plagued my Ph.D. I will always cherish those moments we had together
in Gates 432.

And, of course, I would be remiss if I didn’t give a shout-out to Pratiksha Thaker, our
honorary member of 432, who was and still is always welcome to come work in our office.

Last, but certainly not least: the biggest thank you a human being could ever offer to
my family. To my aunts, uncles, cousins, nieces, nephews, and grandparents: thank you
for offering your love and support over the past seven years, even from thousands of miles
away in Palestine.

To my mom, my dad, and my sister: thank you for absolutely everything you have
done for me since I was born—for feeding me, protecting me, clothing me, nurturing me,
educating me, guiding me, humbling me, and supporting me. Thank you for every sacrifice
you made, for encouraging me when I was right and correcting me when I was wrong. I am
so lucky to be your son, to be your sibling, and without you, I certainly would have been
lost on this journey. But, with you, I’ve made it to the finish line with the biggest smile on

my face. I couldn’t have done it with you.

Xi

To Mama, Baba, and Ayyoush

Xii

Contents

Abstract

Acknowledgements

1 Introduction

2

3

1.1
1.2
1.3
1.4
1.5
1.6

Traffic Engineeringon WANs
Partitioning the WAN oo
Traffic Engineering via Partitioning: NCFlow and POP
Summary of Results
Previously Published Work,

Dissertation Plan

Background on Traffic Engineering

2.1 Historical Context
2.2 Problem Setup.
2.3 Prior Solutions
2.3.1 Multi-Commodity Flow Problems
2.4 Changing Demands: Analysis of Production Traffic
NCFlow
3.1 Introduction
3.2 Background and Motivation Lo
33 NCFlow o
3.3.1 Basic Flow Allocation,

iv

vi

11
11
12
13
14
16

3.4
3.5

3.6
3.7
3.8

POP

4.1
4.2

4.3

4.4
4.5

3.3.2 Afeasible heuristic 28

3.3.3 Stepping towards optimality 28
3.3.4 Choosing clustersand paths 30
3.3.5 Setting up switch forwarding entries 32
Implementing NCFlow 33
Evaluation L 33
3.5.1 Methodology 34
3.5.2 Comparing NCFlow to the State of the Art 37
3.5.3 Effectof Design Choices 39
3.5.4 NCFlow on Real-World Traffic. 40
3.5.5 Tracking Changing Demands 41
3.5.6 Handling Failures with NCFlow 42
Discussiono 44
Related Work 45
Summary e e e e 47

48
Introduction 48
Partitioned Optimization Problems for TE 51
421 Intuition L e e e 51
422 Procedure forPOP oL 52
4.2.3 Transformations to Granularize TE Problems 53
424 Advantagesof POP o, 55
4.2.5 When Does POPnot ApplytoTE?. 56
Evaluation L 57
4.3.1 Comparing POP to the State of the Art 58
4.3.2 Effectiveness of Commodity Splitting 63
4.3.3 Alternatives to Random Partitioning 65
Related Work and Discussion 65
Summary e e e e e 66

X1V

5

6

NCFlow vs POP

5.1 When Does POP Underperform?
5.2 When Does NCFlow Underperform?
5.3 Experimental Results
54 Summary e e e

Additional Applications of POP

6.1 Introduction
6.2 Granular Allocation Problems
6.3 Partitioned Optimization Problems
6.3.1 Intuition e
6.3.2 Procedure for Granular Problems
6.3.3 Transformations to Granularize Problems
6.3.4 Benefitsof POP.
6.4 Case Studies of ApplyingPOP
6.4.1 Resource Allocation for Heterogeneous Clusters
6.5 Query Load Balancing
6.6 When is POP Not Applicable?
6.7 Analysis
6.7.1 Theoretical Analysis for a Simple Problem
6.7.2 Relationship to Primal Decomposition
6.7.3 Expected Runtime Benefits
6.8 Implementation
6.9 Evaluation
6.9.1 End-to-EndResults oL
6.10 Related Work and Discussion
6.11 Summary e
Conclusion
7.1 LessonsLearned
7.2 BroaderImpact
7.3 Future Work

XV

68
68
70
71
73

75
75
78
80
81
81
83
86
87
87
89
90
91
91
94
95
95
96
97
101
103

A NCFlow 110

A.1 Properties of NCFlow’s flow allocation algorithm 110
A.1.1 Proof that the algorithm in §3.3.1 meets demand and capacity con-
Straints L. e 110
A.1.2 Proof that the heuristic in §3.3.2 leads to feasible flow allocations . 111
A.1.3 Proof of optimality for algorithm in §3.3.1 given some sufficient
conditions L. 113
A.2 Data-plane details for NCFlow 114
A.2.1 Actions at the NCFlow controller, after each allocation 114
A.2.2 Details on switch forwarding entries 115
A3 Definitions of NoMoreFlow 116
A4 FaultModel 117
A.5 Benchmarking TEAVAR and TEAVAR* 118
A.5.1 Formulation for TEAVAR* 118
A.5.2 Comments on benchmarking TEAVAR 120
A.6 Additional Experiments 121
A.6.1 Breakdown of NCFlow’s Performance 121
A.6.2 Alternate clusteringmethods 124
A.6.3 Effectonpathlatency 125
A.6.4 Alternate pathchoices 126
A.7 Tllustrative examples 126
A8 Optimalitygap 130
A.8.1 Optimal MaxEdgeFlow 131
A.8.2 [Edge flow with cluster constraints 132
A.8.3 Path form with cluster and path constraints 132
A.8.4 Experimentalresults 135
B POP 137
B.1 Proof of Bound on Random Partitioning for Simple Allocation Problem . . 137
Bibliography 140

Xvi

List of Tables

2.1
2.2

3.1
3.2
3.3

4.1

5.1
5.2

A.l
A2

Notation for Multi-commodity Flow Problems 15
Summary of Multi-commodity Flow Problems 16
Notation for NCFlow 23
Linear Programs in NCFlow 26
WAN Topologies for NCFlow Evaluation 34
WAN Topologies for POP Evaluation 57
NCFlow vs. POP on Imbalanced Traffic Matrices 72
NCFlow vs. POP: Summary 73
FIB Entries for NCFlow vs. Baselines 122
Additional Notation for NCFlow’s Optimality Gap 132

Xvii

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2
23

3.1
3.2
3.3
3.4
3.5

3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Microsoft Azure WANo 2
Runtimes of Path-Based MCMF vs. Topology Size 4
Traffic Engineering Trade-offs 5
Examples of Geographic and Commodity-Based Partitioning 7
NCFlow and POP vs. Path-Based MCMF 9
Overview of Traffic Engineering 12
Sub-optimal Routing with CSPF 13
Demand on Production WAN at Microsoft 17
Map of Global Submarine Cables 19
NCFlow’s Workflow 20
Clustering a WAN to Produce a Contracted Network for NCFlow 21
NCFlow Algorithm 24
NCFlow: Translating Flow in MaxAggFlow to Constraints in MaxClus-

terFlow 25
Examples of Flow Allocation Disagreements in NCFlow 27
Impact of Different Clustering Choices in NCFlow 27
First Iteration of NCFlow 28
Second Iteration of NCFlow 29
NCFlow vs. Baselines: Total Flow and Relative Speedup 37
Number of FIB Entries for NetContractFlow vs. Baselines 38
NetContractFlow when using different numbers of clusters 39
NetContractFlow on Traffic Measured in a Production WAN 40

Xviii

3.14 Tracking Demand: NetContractFlow vs. PF,, PF,,,, and Instant PF,
3.15 Comparing Failure Response of NCFlow with Prior Work

4.1 Overview of Commodity-Based Partitioning
4.2 Commodity Splittingin POP
4.3 POP vs. NCFlow vs. Baselines: Total Flow and Relative Speedup
4.4 Results for POP on Maximum Total Flow
4.5 Scatterplot Results for POP on Maximum Total Flow Problem
4.6 POP on Traffic Measured in a Production WAN
4.7 Results for POP on Maximum Concurrent Flow
4.8 Results for POP on Min-Max Link Utilization
4.9 Impact of Commodity Splitting in POP on Different Traffic Models

4.10 Comparison of Various Partitioning Algorithms for POP on the Maximum

Total Flow Problem
5.1 Failure Scenarios for POPand NCFlow

6.1 Comparison of Gavel to POP and Gandiva
6.2 POPOverview e
6.3 Client SplittinginPOP,
6.4 Sample Cluster Scheduling Problem
6.5 Results for POP on Cluster Scheduling: Max-Min Fairness Policy
6.6 Results for POP on Cluster Scheduling: Proportional Fairness Policy
6.7 Results for POP on Cluster Scheduling: Minimize Makespan Policy
6.8 Results for POP on Query Load Balancing: Minimize Shard Movement
Policy e

A.1 How NCFlow Bundles Inter-Cluster Edges in MaxAggFlow and Max-
ClusterFlow
A.2 NCFlow Speedup Ratio, Broken Down by Relative Total Flow
A.3 Cross-sectional CDF plots of NCFlow vs Baselines
A.4 Clusters using FMPartitioning vs. Spectral Clustering and Leader Elec-
tion . .

Xix

A.5 Effect of NCFlow on Path Latency
A.6 NCFlow vs. Baselines: Total Flow and Relative Speedup, k£ = 4, no Edge
Disjointness e
A.7 NCFlow vs. Baselines: Total Flow and Relative Speedup, k. =8
A.8 NCFlow vs. Baselines: Total Flow and Relative Speedup, k£ = 8, no Edge
Disjointness e e
A.9 NCFlow vs. Baselines: Total Flow and Relative Speedup, k =16
A.10 NCFlow vs. Baselines: Total Flow and Relative Speedup, £ = 16, no Edge
Disjointess
A.11 NCFlow Sub-Optimal when Aggregate GraphisnotaTree
A.12 Sub-optimality of NCFlow when Demands Cannot be Fully Satisfied.
A.13 Sub-optimality of NCFlow when Multiple Edges are Present between Pairs
of Clusters.
A.14 Alternate Clustering Choices that Fix Sub-optimality Concerns and Dis-
agreements in NCFlow
A.15 Optimality Gaps in NCFlow

XX

Chapter 1
Introduction

Since the early 1990s, the Internet has evolved from an avant-garde experiment into a
mature, ubiquitous technology that has transformed our lives in every imaginable way.
Today, approximately 150,000 GB of traffic is sent on the Internet every second around the
world [3], and one would be hard-pressed to name another technology or innovation that
has had a greater daily impact on human society.

What makes the Internet a truly global phenomenon is a concept called Wide-Area
Networks (WANs), which connect Internet-accessible devices across entire towns, cities,
states, and even countries. To route Internet traffic around the world, WANSs have histori-
cally relied on dynamic, decentralized protocols, such as IS-IS [57,92,112] and BGP [10,
34,51,52], to coordinate and ensure that packets can be delivered safely and reliably from
any source to any destination. These protocols effectively connect WANSs to one another,
thus making the Internet a true network of networks. They enable a user in, say, Singapore
to load a website hosted on servers in Buenos Aires, for example.

However, in the last decade, Wide-Area Networks themselves have become global net-
works on their own. With the rise of cloud computing and the demand for globally available
services, large-scale web companies—such as Google, Amazon, and Microsoft—have de-
ployed datacenters all over the world, and they have constructed trans-continental WANs

to ensure that these datacenters are always connected to one another.

CHAPTER 1. INTRODUCTION 2

Figure 1.1: The Microsoft Azure WAN from January 2021 [6]. For simplicity, both the “edge”
WAN (which handles ISP-facing traffic) and the inter-datacenter WAN are both captured in a single
map; in practice, their traffic is managed separately.

Because of their importance, these datacenter WANs have grown faster than their ISP-
facing counterparts; to support their high usage, enterprises provision their links with high-
capacity optical fiber. Moreover, because these WANs must connect datacenters across
continents, enterprises must also lease intercontinental submarine cables to be used as links
in the WAN to realize their global connectivity aspirations [81]. Unsurprisingly, datacenter
WANSs have become an expensive resource for cloud providers [5,71,72,76]: Microsoft
values their Azure WAN at a billion dollars and estimates its annual maintenance cost to be
a hundred million dollars [84].

In this dissertation, we argue that routing traffic on these global datacenter WANS is
a non-trivial problem for network operators: the state-of-the-art methods available today
scale poorly with network size. To address this challenge, we introduce two new algorithms
that can more efficiently and effectively route traffic, thereby maximizing utilization on the

WAN and ensuring its costs are well worth the benefits.

CHAPTER 1. INTRODUCTION 3

1.1 Traffic Engineering on WANSs

Because of their enormous value, enterprises place significant importance on traffic en-
gineering (TE) [20]—the study of efficiently routing dynamic traffic demands—on their
WAN:Ss. Network operators leverage TE to achieve high utilization. However, the traditional
TE strategies, which typically prescribe decentralized routing (e.g., RSVP-TE [19,21,98]),
pose a challenge for large-scale WANSs. In the decentralized model, no entity has a global
view of the entire set of demands on the WAN, and instead, individual sites in the network
greedily select paths for their traffic using algorithms such as Constrained Shortest Path
First (CSPF) [55, 56, 58, 138]. As a result, the network can get stuck in locally optimal
routing patterns that are globally sub-optimal [115].

Starting about a decade ago, large cloud providers began applying the principles of
software-defined networking [35,36] to TE, thus birthing a centralized approach for routing
traffic [71,72,76]. Specifically, they computed optimal routing schemes for the current set
of demands by solving global multi-commodity flow problems on the entire WAN [71,72,
76]; once computed, the routes are encoded into the switch forwarding tables across the
network [5,36] (e.g., using MPLS [98]). In the centralized model, flow problems are often
expressed as linear programs, with well-defined objective functions and constraints [24,29].
This gives network operators the ability to explicitly model which objectives they care
about (e.g., maximizing throughput, or minimizing maximum link utilization) and define
the optimal solution (and therefore measure any gaps in optimality). Most importantly,
these linear programs can be efficiently solved using off-the-shelf blackbox optimization
solvers, such as Gurobi [68], Mosek [7], CPLEX [45], and many others [50]. Thanks to
this paradigm shift, enterprises were now able to offer low latency and high bandwidth for
critical, customer-facing applications [54, 125, 143], as well as fast response times for bulk
data transfers [79,89, 117].

The centralized strategy has yielded significant improvements in utilization and overall
network performance since its adoption. But, as topology sizes have continued to grow,
solving multi-commodity flow problems as linear programs on the entire network has be-
come impractical and intractable. Network operators at Google captured this point elo-

quently in [72]; they noted that the “algorithm run time increased super-linearly with the

CHAPTER 1. INTRODUCTION 4

/——/ i

o/

o/

25 74 110 145 197 754
Number of Nodes, log scale

me (s), log scale

= = — — — —
OI C? o O O O
N - o - N w

Runti

Figure 1.2: As WAN topologies grow, multi-commodity flow problems become increasingly in-
tractable. To illustrate this, we benchmark a path-based formulation of the Multi-Commodity Maxi-
mum Flow (MCMF) linear program in Gurobi [68] on several topologies from the Internet Topology
Zoo [82]. As the topology size increases, the solver runtime increases quadratically. (Note the log
scale on both axes.)

site count,” which led to “extended periods of traffic blackholing during data plane failures,
ultimately violating our availability targets,” as well as “scaling pressure on limited space
in switch forwarding tables.” Even when leveraging state-of-the-art optimization software,
solver runtimes have increased super-linearly with topology sizes. (See Figure 1.2 for em-
pirical evidence.)

What compounds the scalability challenge is the increasingly dynamic nature of TE
in the 21st century: simply put, WAN traffic patterns have become more volatile as traf-
fic demands have increased. For example, network operators at Facebook have observed
high variability on their edge networks as recently as March 2019 [41], with daily peak
traffic reaching 7x more than the trough. This dynamism is not simply a function of user
behavior, however; traffic patterns may also change because of link/switch failures in the
network, which can occur at a moment’s notice [27, 84,96, 147] and with surprisingly high
frequency [81].

In response, enterprises have introduced tighter SLAs (e.g., within minutes) to promptly

respond to traffic spikes. The ultimate upshot of these trends is this: traffic engineering has

CHAPTER 1. INTRODUCTION 5

Centralized Ideal
(Linear programming)

Py

T

2

o Optimal + faster

= = better utilization Decentralized

(greedy algorithms)

Speed

Figure 1.3: Trade-off space for traffic engineering solutions today. Linear programs produce high-
quality traffic routes, but cannot keep up with today’s SLAs. On the other hand, heuristic approaches
and approximate algorithms are runtime-efficient, but produce sub-optimal routing. A solution that
is both fast and optimal will lead to better utilization on the WAN.

now become a rapid-paced, high-stakes, multi-shot game, where traffic routes must be re-
computed more quickly, more frequently, and more optimally than ever before. And, as il-
lustrated in Figure 1.3, the trade-off between centralized linear programming and decentral-
ized greedy algorithms is an unenviable predicament for network operators to stomach—

they are caught between the proverbial rock and a hard place.

1.2 Partitioning the WAN

We must find a better trade-off, a solution that is both runtime-efficient and close to optimal
in its routed flows. We know empirically that, for large-scale WANs with hundreds of sites,
the centralized approach will not scale. On the other hand, we also know that a completely
decentralized approach—where every switch is making locally optimal decisions—will
lead to a collectively bad outcome as well. The question becomes: can we do something in
between, a more Goldilocks solution that hits the sweet spot between complete centraliza-

tion and full decentralization?

CHAPTER 1. INTRODUCTION 6

To achieve this goal, we will leverage a key idea:

We can partition WAN topologies into multiple discrete components, and these components

can be treated as distinct sub-problems of the original TE problem.

In this dissertation, we propose partitioning the WAN to transform the global TE prob-
lem into a discrete set of independent, parallelizable sub-problems. Intuitively, if we can
find a clever partitioning strategy that can reliably instantiate these sub-problems, we can
then use a divide-and-conquer approach to compute flow allocations and route traffic on
the WAN. The added benefit from partitioning is that, if we can now decide the number of
partitions, then that provides us with a tunable knob, which we can use to trade off between
flow quality and runtime. Essentially, if the centralized and decentralized approaches rep-
resent two poles of the traffic engineering spectrum, partitioning allows us to navigate the

entire spectrum and find that sweet spot.

Thesis statement: By partitioning the WAN, we can use a divide-and-conquer strategy for

traffic engineering to navigate the trade-off between solver runtime and traffic quality.

Devising a partitioning strategy for TE, however, is non-trivial. For it to succeed, it must
create sub-problems that have some semblance of independence—otherwise, the problem
cannot be parallelized. At the same time, the partitioning strategy must also ensure that the
global problem’s constraints are never violated. This transformation could (and most likely
will) lead to some approximation errors for certain inputs; we will occasionally sacrifice
traffic in the WAN for better runtime performance. But, if designed correctly, we will

achieve a much better trade-off between optimality and efficiency.

1.3 Traffic Engineering via Partitioning: NCFlow and POP

We present two different partitioning strategies for TE: geographic partitioning and commodity-
based partitioning. In geographic partitioning, we compute clusters on the network, seg-

menting the topology into contiguous components. Figure 1.4a shows an example of such

CHAPTER 1. INTRODUCTION 7

(a) Geographic partitioning. The C denotes the (b) Commodity-based partitioning. The link ca-
bandwidth capacity for each link in the network. pacity C' from the original topology is now C'/2.

Figure 1.4: Examples of geographic and commodity-based partitioning of a simple WAN that spans
the continental United States.

a clustering on a fictitious WAN in the continental U.S. Computing these clusters is a non-
trivial matter, and a “bad” clustering can significantly impact flow quality on the network.
We show that certain graph clustering algorithms that aim to preserve the densely connected
sub-graphs in the topology, such as modularity-based clustering [31,42] and spectral clus-
tering [107, 137], are effective for traffic engineering.

To leverage geographic partitioning, we propose an algorithm called NCFlow.! Instead
of solving the global multi-commodity flow problem on the entire WAN, NCFlow solves
i) a simpler routing problem on the contraction of the network (i.e., the clustered graph),
then ii) the set of routing sub-problems on disjoint clusters within the network. NCFlow
still uses linear programming to solve the flow problem and maximize the total flow ob-
jective, but it modifies the linear programs to take advantage of the clustering. Through
careful construction, NCFlow can solve the sub-problems in parallel, while still routing
inter-cluster traffic and reconciling flows between clusters.

In our second approach—commodity-based partitioning—we randomly partition the
TE problem into smaller, independent sub-problems: each sub-problem has the same topol-
ogy, but with a fraction of the link capacities of the original problem, as well as a subset of
the commodities.? Figure 1.4b shows an example of commodity-based partitioning on the

same fictitious WAN from Figure 1.4a. We show, both theoretically and empirically, that

Ishort for Network Contractions for Flow problems
2A commodity is a source-destination pair in the WAN that has requested traffic demand; we will define
it more formally in Chapter 2.

CHAPTER 1. INTRODUCTION 8

random partitioning is also effective for developing a divide-and-conquer solution to TE.

To take advantage of commodity-based partitioning, we propose POP,? our second algo-
rithm for scalable traffic engineering. Because of the partition is generated randomly, POP
exploits the Law of Large Numbers, which yields benefits at larger scales. Our approach
also allows us to reuse the original linear program without modification, which therefore
provides more generality than the previous approach—it can be applied to more objectives
beyond maximum total flow.

It is important to note that, while both NCFlow and POP use partitioning to accelerate
TE, neither requires any physical modification to the underlying topology structure of the
WAN. Both geographic and commodity-based partitioning are purely logical abstractions

that we use to accelerate traffic engineering.

1.4 Summary of Results

We benchmarked both NCFlow and POP on a thorough test harness of inputs: eight pub-
licly available WAN topologies from the Internet Topology Zoo [82], several different traf-
fic models, and many demand scales to simulate both light and heavy traffic scenarios.
Additionally, we were fortunate enough to evaluate our algorithms on a month’s worth of
real-world traffic demands from the Microsoft Azure WAN topology. Our results show that
both NCFlow and POP achieve a better trade-off between optimality and runtime than the
current state of the art in traffic engineering. In the median case, NCFlow nearly matches
the solution quality of currently deployed solutions for the maximum total flow objective
(99.1% of optimality), but is 11 x faster than the gold standard approach, with maximum
observed speedups of 1,900 x. Similarly in the median case, POP realizes 99.9% of the op-
timal solution, but is 18 x faster than the gold standard approach, with maximum observed
speedups of 98 x. In our real-world experiments, we observed similar behavior: NCFlow
achieved 98.5% of optimality with 7.9x speedups in the median case, while POP achieved
99.9% of optimality with 12.5x speedups in the median case.

Additionally, we benchmark NCFlow and POP on real-world traffic matrices from Mi-

crosoft. we find that NCFlow is 8.5 faster in the median case, while achieving 98.5%

3short for Partitioned Optimization Problems

CHAPTER 1. INTRODUCTION 9

—— NCFlow POP, k=16
- : A /—-/_

0.4 0.6 0.8 1.0 12 10 107 102 10°
Relative Total Flow Relative Speedup (log scale)

-
o

Fraction of Cases
o
(4]

o
o

o 7
N

Figure 1.5: Performance of NCFlow and POP relative to a Path-Based MCMF implemented and
executed in Gurobi. The left-hand side shows total volume of allocated flow; the right-hand side
shows relative speedup. NCFlow is 11 x faster than in the median case, while POP is 18 x faster.

of optimality; POP is 12.5x faster in the median case, while achieving 99.9% of opti-
mality. Beyond these empirical results, we outline best-case and worst-case scenarios for
both NCFlow and POP and delve into the strengths and weaknesses of each technique to

characterize how we are able to achieve these speedups while still maximizing flow quality.

1.5 Previously Published Work

This dissertation features the following previously published work:

e Contracting Wide-area Network Topologies to Solve Flow Problems Quickly [12].
Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai Menache, Matei Zaharia, Pe-
ter Bailis. NSDI 2021.

e Solving Large-Scale Granular Resource Allocation Problems Efficiently with
POP [102].
Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid, Peter Kraft, Akshay Agrawal,
Srikanth Kandula, Stephen Boyd, Matei Zaharia. SOSP 2021.

1.6 Dissertation Plan

This dissertation is organized as follows: Chapter 2 introduces relevant background on

traffic engineering and partitioning to appropriately ground this dissertation. Chapter 3

CHAPTER 1. INTRODUCTION 10

introduces the NCFlow algorithm; Chapter 4 introduces the POP algorithm. In Chapter 5,
we compare NCFlow to POP and discuss their relative strengths and weaknesses. Chapter 6
discusses POP’s applicability to broader problems in computer systems research beyond
traffic engineering, including cluster scheduling and query load balancing. Finally, we

conclude and discuss possible areas of future work in Chapter 7.

Chapter 2
Background on Traffic Engineering

In this chapter, we provide background and motivation on traffic engineering on Wide-Area
Networks. We describe our problem setup, discuss prior solutions, and introduce notation
and definitions that will be used throughout this dissertation, specifically in Chapters 3 and
4.

2.1 Historical Context

A WAN is broadly defined as any Internet network that covers a wide geographic area,
and its origins can be traced to the infancy of the Internet itself: the original ARPANET
first spanned the western United States before expanding across the continental U.S. Today,
most, if not all, Internet Service Providers (ISPs) are considered WANSs.

Over the last two decades, global Internet companies have constructed their own private
datacenters around the world to better service their users. For these enterprises, classical
decentralized routing protocols, such as BGP [10,34,51,52], have proven to be ineffective,
since they are not capacity- nor performance-aware [125]. Furthermore, research has shown
that significant barriers must be overcome to improve these protocols for today’s traffic
demands [40, 124].

Instead, these companies have elected to maintain their own private WANs to connect

their datacenters. In fact, they often build multiple WANSs: some that connect to ISPs to

11

CHAPTER 2. BACKGROUND ON TRAFFIC ENGINEERING 12

; Max total flow
Linear Maximum concurrent flow
programming Min-max link utilization

MCMF(V,&,D,P) £ max > fi st
ke

periodically
(every few min) h= X 1 VkeD (flow for commodity k)
b=

= S < d, vkeD (flow L nd
Traffic Estimation 2 <ce. Vee (flowl
. Vk,pEPk.cEP
Saiee 7E=o, VpeP.keD (non-negative flow)

Y

Traffic Matrix

sea | sFo | orw | cHr | mvc | amL TE

SEA 1.0 | 0.9 | 1.2 (7 1.3 Controller
SFo | 1.1 0.8 | 0.9 | 0.7 | e.9
Hou [0.8 | 1.1 1.2 | 1.0 | 0.8

cHI | o. 0.6 | o.5 1.3 | 1.1

Ne [1.2 [11 | es | 1e 1.2

AL | 1.0 | 06 | 0.8 | @ 1.1

Figure 2.1: Overview of the Traffic Engineering problem for Wide-Area Networks. A traffic esti-
mation service periodically generates a traffic matrix (TM); both the TM and the WAN topology
are passed as inputs to the centralized TE controller, which is responsible for computing optimal
routes for every entry in the matrix. TE controllers typically use linear programming with blackbox
solvers to compute these routes; this approach provides network operators the flexibility to apply
different objectives (e.g., maximum total flow, maximum concurrent flow, etc.), depending on their
priorities.

reach end users [41, 125, 128, 143],! and others that are dedicated solely to carrying traffic
between datacenters [72,76]. (Figure 1.1 shows a map that displays both types of WANs
operated by Microsoft for their Azure cloud service.) The reasons for this development are
two-fold: i) inter-datacenter WANSs typically exhibit unique traffic characteristics compared
to user-facing traffic [71], and ii) traffic on these WANs makes up an increasingly large

fraction of global Internet traffic today [88].

2.2 Problem Setup

In our setting, we’re given as input a Wide-Area Network topology and a traffic matrix
(TM), which represents the traffic demands on the network at a given point in time. A
commodity is any source-destination pair in the TM (i.e., a row and a column), and a

demand is the amount of traffic a commodity requests (i.e., the entry in the matrix for a

These are often referred to as “edge” WANS in the literature.

CHAPTER 2. BACKGROUND ON TRAFFIC ENGINEERING 13

CSPF

Optimal

N

Figure 2.2: Simple example of sub-optimal routing with Constrained Shortest Path First (CSPF).
Commodities A, B, and C' all have unit demand and share the same destination, and each edge has
unit capacity. Compared to the optimal routing on the right-hand side, CSPF’s routing on the left
consumes 5X as many links.

row-column pair).

The traffic matrices are generated by a centralized traffic estimation service, which runs
periodically on a regular interval (e.g., every five minutes). Depending on the WAN’s traffic
volatility, this interval window can be adjusted by the network operator, so long as the TE
controller can keep up. The service passively collects sFlow [63, 116] samples exported
by each network device in the WAN, then aggregates these samples per source/destination
pair, applies smoothing over the time window, and produces a complete matrix for the TE
controller to consume [6].

The TE controller, which is also a centralized service, has a single responsibility: com-

pute optimal routes for every commodity’s demand in the traffic matrix.

2.3 Prior Solutions

The earliest strategies for traffic engineering relied on decentralized approaches, drawing
inspiration from the naturally decentralization that was characteristic of the early Internet.
In this setting, no entity has a global view of the traffic demands on the WAN; instead, each
individual switch decide on its own how to route traffic, by greedily selecting paths for
their traffic. The most common path selection algorithm is Constrained Shortest Path First
(CSPF [55, 56,58, 138]), which essentially runs a shortest-path algorithm after pruning the

links that violate the minimum bandwidth capacity constraints for the traffic. Figure 2.2

CHAPTER 2. BACKGROUND ON TRAFFIC ENGINEERING 14

illustrates an example of how this heuristic can go awry and allocate traffic along paths
that are globally sub-optimal. Prior work has shown that CSPF does not scale well to
large-scale datacenter WANS, especially on the order of hundreds or thousands of sites
and links [115]. Other heuristics, such as Equal-Cost Multi-Path (ECMP) routing, behave
similarly [39,73,132].

One possible approach to cope with such massive scale is to construct the WAN topol-
ogy as a hierarchy, such that only a small, well-connected core of the topology is globally
managed while the rest of the WAN uses distributed heuristics [72]. Doing so adds con-
straints to the WAN topology, and can complicate deployment; moreover, such distributed

heuristics have been shown to be sub-optimal [71].

2.3.1 Multi-Commodity Flow Problems

In this section, we give some background on multi-commodity flow problems. Given a set
of nodes, capacitated edges, and demands between nodes, a flow allocation is feasible if it
satisfies demand and capacity constraints. The goal of a multi-commodity flow problem is
to find a feasible flow which optimizes a given objective; Table 2.2 lists some examples.

The fastest algorithms [53,80] are approximate; i.e., given a parameter ¢, they achieve at
least (1—¢) x the optimal value. However, their runtime complexity is at least quadratic (see
Table 2.2). Moreover, these solutions allow demands to travel on any edge, thus requiring
millions of forwarding table entries at each switch for thousand-node topologies.

Instead, production systems [71, 76] restrict flow to a small number of pre-configured
paths per commodity, which reduces the required forwarding table entries by 10—-100x.

Using notation from Table 2.1, the feasible flow over a pre-configured set of paths can
be defined as:

CHAPTER 2. BACKGROUND ON TRAFFIC ENGINEERING 15

Terms

Definitions

V,E,D,P

Sets of nodes, edges, commodities, and paths

N, M, K

The numbers of nodes, edges, commodities, and paths, i.e., N =
V|,M = [€], K = |D|

€,Ces P

Edge e has capacity c.; path p is a set of connected edges

(Sk7 tk7 dk)

Each commodity & in D has source and target nodes (sg,tx € V)
and a non-negative demand dj,.

£, fi

Flow assignment vector for a set of commodities, and the flow for
commodity & on path p.

Table 2.1: Notation for framing multi-commodity flow problems.

FeasibleFlow(V, £, D, P) £ {fi | Vk € D and (2.1)

Z Iy < ce, Ve € £ (flow below capacity)

Vk,pEP),e€p

fo=>_ 12, Vk € D (flow for commodity k)

PEPkK

fe < dy, Vk € D (flow below demand)

7>0 Vp € P,k € D (non-negative flow) }

With this definition, we can define multiple objectives that we may wish to optimize for in

the WAN. For example, maximizing the total flow in the network can be expressed as:

MaxFlow(V, &, D, P) £ mtgxz i (2.2)

keD

s.t. f € FeasibleFlow(V, &, D, P)

Production SDN-based TE systems at large enterprises use linear optimization-based

solvers [71,72,76]. On WANs with thousands of nodes, the optimization problem could

have millions of variables and equations just to verify that a flow allocation is feasible.

2Specifically, over K variables and K + M equations; if N > 103, K > 10°

CHAPTER 2. BACKGROUND ON TRAFFIC ENGINEERING 16

Objective
) X Additional constraints Used in Best known complexity
function
Max Total Flow | max » _ fx None [71,76] O(M2e=210g%M M) [53]
1D
Max C t
ax F‘:“c“”e" maxa dya < f,Vk € D [27.77,79] | O(e=2(M? + KN)logP™M M) [80]
ow
Min-Max Link
e vax L min z S fP<zveee (86] O(e2vK 10g®D) M) [49]
Utilization Vk,pCPr,eCp

Table 2.2: We illustrate a few different multi-commodity flow problems, all of which can be defined
over FeasibleFlow in Equation 2.1 but optimize for different objectives and can have additional
constraints; see notation in Table 2.1. More problems are discussed in [15].

In addition to repeatedly solving global optimizations, these TE schemes must maintain
an up-to-date view of the topology, gather desired volumes for demands and update traffic
splits at switches based on the result of the optimization.

Our production experience is that most of these repetitive steps have a latency of a
few RTTs (round trip times); therefore, solving the optimization dominates, especially on
large topologies. Moreover, demands are limited to their allocated rates in software at the
source servers and thus allocating less than the full desired rate need not result in packet
loss [71]. Finally, applications that contribute a large fraction of the bytes moving between
datacenters are elastic in short timescales (e.g., large dataset transfers for data analytics).
That is, these apps seek a fast completion time but do not need a large rate in every op-
timization epoch. Some other applications have a decreasing marginal utility as their rate
allocation increases such as video streams of varying quality [85]. Today’s SDN-based TE
solutions [71, 76] use multiple priority classes to maximize allocations for elastic traffic

without affecting the latency-sensitive traffic.

2.4 Changing Demands: Analysis of Production Traffic

In the previous chapter, we showed the scalability challenges of traffic engineering on pub-
licly available WAN topologies via a simple experiment that measured TE solver runtime
vs. topology size (see Figure 1.2). We also claimed that the changes in demands—the dy-
namic nature of today’s traffic—can also lead to poor utilization. A natural question arises:

just how much do we observe in today’s datacenter WANs?

CHAPTER 2. BACKGROUND ON TRAFFIC ENGINEERING 17

© 3.0
C
©
g
. 2.5
©
(]
*g 2.0
5
o
o 1.5+

@oo $®b Q& & F < B @oo $®b Q& &S < F S

Figure 2.3: Production traffic on a Microsoft datacenter WAN over a several-month period. For
privacy considerations, we plot the normalized demand, rather than the absolute traffic volume over
time. The change in demand between any two successive traffic matrices is substantial: the average
change is 35%, and, in 20% of the cases, the delta is over 45%.

To answer this question, we obtained and analyzed the traffic matrices from a produc-
tion WAN at Microsoft over a several-month period from 2019. Figure 2.3 plots the nor-
malized demand over time. As the Figure demonstrates, the change in traffic demand from
one 5-minute window to the next is substantial: the average change is 35%, and, in 20% of
the cases, the demand is over 45%. Microsoft solves a global flow allocation problem every
few minutes, and we analyzed the traffic that will remain unsatisfied if the flow allocation
from the previous window were to be used instead of computing a new allocation. We see
that the median loss is 13%; in 20% of the cases, over 20% of the demand remains unsat-
isfied. We verify that computing a new allocation will satisfy all of the demand; using the
previous window’s allocation causes loss because some datacenter pairs may receive more
flow in the previous allocation than their current demand, while other datacenter pairs go
unsatisfied. Given this data, computing a new allocation in each time window is needed to

carry more traffic on the WAN.

Chapter 3

NCFlow

3.1 Introduction

In this chapter, we discuss NCFlow, a more scalable algorithm for traffic engineering that
leverages geographic partitioning. NCFlow is specifically designed for the maximum total
flow objective; we show that, compared to the state of the art, NCFlow is substantially
faster at the expense of a small amount of flow. By using a faster solver like NCFlow,
WAN operators can reduce loss when faults occur and carry more traffic on the network by
tracking demand changes.

Our solution is motivated by the observation that WAN topologies and demands are con-
centrated: the topology typically has well-connected portions separated by a few, lower-
capacity edges, and more demand is between nearby datacenters. This is likely due to
multiple operational considerations: i) submarine cables have become shared choke points
for connectivity between continents [60, 81](see Figure 3.1), ii) the connectivity over land
follows the road or rail networks along which fiber is typically laid out, and iii) enter-
prises build datacenters close to users, then steer traffic to nearby datacenters [16,125,143].
Therefore, more capacity and demand are available between nearby nodes; an analysis of
data from a production WAN at Microsoft in §3.2 supports this observation.

We leverage this concentration of capacity and demand to partition the WAN geograph-
ically, thereby decomposing the global flow problem into several smaller problems, many

of which can be solved in parallel. As shown in Figure 3.3, we divide the network into

18

CHAPTER 3. NCFLOW 19

Figure 3.1: Submarine cables serve as choke points in global datacenter WAN topologies; figure is
excerpted from [126].

multiple connected components, which we refer to as clusters. We then solve modified
flow problems on each cluster, as well as on the contracted network, where nodes are clus-
ters and edges connect clusters that have connected nodes. Prior work [1,11,23] notes that
Google and other map providers use different contractions to compute shortest paths on
road network graphs. Our goal is to closely match the multi-commodity max flow solution
in quality (i.e., carry nearly as much total flow), while reducing the solver runtime and
number of required forwarding entries. We discuss related work in §3.7; to our knowledge,
we are the first to demonstrate a practical technique for multi-commodity flow problems on
large WAN topologies.

Solving flow problems on the contracted network poses two key challenges:

1. How to partition the network into clusters? More clusters leads to greater parallelism,
but maximizing the inter-cluster flow requires careful coordination between the sub-
problems at multiple clusters.

2. How to design the sub-problems for each cluster to improve speed while reducing
inconsistencies in allocation? The sub-problem for a cluster has fewer nodes and
edges to consider, but it will not be be faster if it must consider all node pairs whose

traffic can pass through the cluster.

Our solution NCFlow achieves a high-quality flow allocation with a low runtime and

CHAPTER 3. NCFLOW 20

WAN Topology periodically (e.g, every few min)

c Traffic Estimation Service
Clusters
e
= /* /

H

Traffic Hlstory Contract — Allocate flow on ‘
[f | 2 | o I I I I / Network Paths contracted network
% : o . Occasionally
— e | 2 | e [0 (e.g, weekly, monthly)

Figure 3.2: NCFlow’s workflow. Our proposed solution first computes clusters on the WAN topol-
ogy, based on the topology itself and the history of traffic demands. (The latter is optional and
depends on the clustering algorithm’s required inputs.) In addition to the clusters, a set of cluster-
aware paths are also computed. Then, for each new traffic matrix, NCFlow allocates flows based on
the clusters and paths from the previous step.

space complexity by addressing each of these challenges in turn. First, we contract the net-
work using well-studied algorithms such as modularity-based clustering [42] and spectral
clustering [107], which are designed to identify the choke-point edges in a network. Sec-
ond, we bundle commodities whose sources and/or targets are in the same cluster, treating
them as a single commodity. In Figure 3.3 for example, when routing traffic from source
nodes in the red cluster to target nodes in the green cluster, the yellow cluster treats that
traffic as a single bundled commodity, instead of (up to) 24 individual commodities. Doing
so can lead to inconsistent flow allocations between clusters (which we explain in §3.3.1),
and we devise careful heuristics to provably avoid them (§3.3.2). Finally, we show that
bundling demands between clusters provides an additional benefit to WAN operators: we
can reduce the number of forwarding entries needed at switches by reusing pathlets within
clusters and traffic splitting rules across multiple demands (§3.3.5).

Figure 3.2 shows the workflow for NCFlow. First, we choose appropriate clusters and
paths using an offline procedure over historical traffic—these choices are pushed into the
switch forwarding entries. This step happens infrequently, such as when the topology
and/or traffic changes substantially. Then, online (e.g., once every few minutes), NCFlow
computes how best to route the traffic over the clusters and paths, similar to deployed solu-
tions [71,72,76].

Overall, our key contributions are:

CHAPTER 3. NCFLOW 21

/>\ﬁ v

Figure 3.3: Example clustering of a WAN to produce a contracted network for NCFlow. The
original network on the left is divided into clusters, shown with different background colors. The
contracted network is on the right.

e We propose NCFlow, a decomposition of the multi-commodity max flow problem
into an offline clustering step and an online, provably feasible, algorithm that solves
a set of smaller sub-problems in parallel.

e We evaluate NCFlow using real traffic on a large enterprise WAN, as well as synthetic
traffic on eleven topologies from the Internet Topology Zoo [82]. Our results show
that, for multi-commodity max flow, NCFlow is within 2% of the total flow allo-
cated by state-of-the-art path-based LP solvers [71,72,76] in 50% of cases; NCFlow
is within 20% in 97% of cases. Furthermore, NCFlow is at least 8x faster than
path-based LP solvers in the median case; in 20% of cases, NCFlow is over 30X
faster. Lastly, NCFlow requires 2.7—16.7x fewer forwarding entries in the evalu-
ated topologies. NCFlow also compares favorably to state-of-the-art approximation
algorithms [53, 80] and oblivious techniques [86, 118].

e We show that, as a fast approximate solver, NCFlow can be used to react quickly
to demand changes and link failures. Specifically, in comparison to TEAVAR [27],
NCFlow carries more flow when no faults occur and suffers about the same amount

of total loss during failures.

We have open-sourced NCFlow athttps://github.com/stanford-futuredata/
pop—nctflow.

https://github.com/stanford-futuredata/pop-ncflow
https://github.com/stanford-futuredata/pop-ncflow

CHAPTER 3. NCFLOW 22

3.2 Background and Motivation

In this section, we provide summary of the main findings which have influenced NCFlow
and shaped our design choices. Our observation that demand and capacity are concentrated
among nearby nodes in the WAN topology is grounded on the following measurements
from a production WAN at Microsoft:

Demand properties:

e On average, 7% (or 16%) of the node pairs account for half (or 75%) of the total

demand.

e When nodes are divided into a few tens of clusters, 47% of the total traffic stays
within clusters. If the demands were distributed uniformly across node pairs, only
8% of the traffic would stay within clusters; thus the demand within clusters is about

6x larger than would be expected from a uniform distribution.
WAN topology properties:

e When nodes are divided into tens of clusters, 76% of all edges and 87% of total

capacity is within clusters.

e The skew in capacity is small: the ratio between the largest edge capacity and the

mean is 10.4.

e The skew in node degree is also small: the average node degree is 3.9, with o = 2.6;

the max is 16.

e Relative to the network size (hundreds of nodes), the average network diameter (=11)

and the average shortest-path length (= 5.3) are very small.

Motivated by the above analyses, NCFlow seeks to be a fast solver for large WAN topolo-
gies by leveraging the concentration of traffic demands and capacity. In this chapter, we

consider the problem of maximizing the total flow across all demands (Equation 2.2).

CHAPTER 3. NCFLOW 23

Terms Definitions

Vages Eager Dage» Page | Nodes, edges, commodities, and paths in the aggregated graph

Ve, Dy, Py Subscript denotes entities in the restricted graph for cluster =

x,m Each cluster x is a strongly connected set of nodes and 7 is the
number of clusters

by Kpy, Koy, Kyt An actual commodity k; the rest are bundled commodities from
one source (s) or all nodes in a cluster (z) to a target (¢) or to all
nodes in a cluster (y)

Table 3.1: Additional notation specific to NCFlow.

3.3 NCFlow

In this section, we describe NCFlow. Our steps are as shown in Figure 3.2. Offline, based
on historical demands, we divide the network into clusters and determine paths. Further
details are in §3.3.4. Online, we allocate flow to the current demands by solving a carefully
constructed set of simpler sub-problems, some of which can be solved independently and
in parallel. We describe these sub-problems in §3.3.1. Although they can be solved quickly,
disagreements between independent solutions can lead to infeasible allocations; we present
a simple heuristic in §3.3.2 that provably leads to feasible flow allocations. In §3.3.3,
we discuss extensions that increase the total flow allocated by NCFlow. We also show
sufficient conditions under which NCFlow is optimal and matches the flow allocated by
MaxFlow. Finally, in §3.3.5, we discuss how NCFlow uses fewer forwarding entries by

reusing pathlets within clusters and splitting rules for different demands.

3.3.1 Basic Flow Allocation

We begin by describing a simple (but incomplete) version of NCFlow’s flow allocation
algorithm; the pseudocode is in Figure 3.4. We continue using Figure 3.3 as a running
example. The basic algorithm proceeds in four steps.

In the first step, we allocate flow on the aggregated graph; as shown in MaxAggFlow
in Figure 3.4. In the aggregated graph, an example of which is in Figure 3.3 (right), nodes
are clusters and the edges are bundled edges from the original graph—the edge between

the red and yellow clusters corresponds to the five edges between these clusters on the

CHAPTER 3. NCFLOW 24

MaxAggFlow
f]_ éI\/IaXFlOW(]ngg, gagg, Dagg7 7Dagg)

MaxClusterFlow l
Vclusters z, £ £MaxFlow(V,, &, D, P,
s.t. NoMoreFlowThruCluster(f, f;,z) (see §A.3)

MinPathE2E 1
f3 2{ f, Vk € Dygg) sit.
s.t. NoMoreAlongPaths(f, f;) (see §A.3)

SrcTargetMax l
Vclusters ., y,x # v, 7Y Sarg max Z I
kK oy
st Y oS fiky Vsew Y < fig, Vtey;
keK .y ke Ko
> fe < fakay Ji < dy, VEk € Kay
kK oy

Figure 3.4: The basic flow allocation algorithm used by NCFlow; notation used here is defined
in Table 3.1.

actual graph. Similarly, we bundle demands on the aggregated graph: the demand K,
between the clusters x and y corresponds to all of the demands whose sources are in cluster
x and targets are in cluster y. The resulting flow allocation (f;) accounts for bottlenecks
on the edges between clusters. However, this flow may not be feasible, since there may be
bottlenecks within the clusters.

In the second step, we refine the allocation from step 1 to account for intra-cluster
demands and constraints. Specifically, we allocate flow for the demands whose sources
and targets are within the cluster. We also allocate no more flow than was allocated in f;
for the inter-cluster flows. MaxClusterFlow in Figure 3.4 shows code for this step. We

note a few details:

e We use virtual nodes to act as the sources and targets for the inter-cluster flows; the
flow allocated in f; determines which virtual node (i.e., which neighboring cluster)

1s the sender or the receiver for an inter-cluster demand.

CHAPTER 3. NCFLOW 25

.i_f_\fj) -

4
fl, K y,r q
Xz ZS Tf Ksz = fl Kxz i fl Koz Z 2 Koz = f;l'sz i fl’sz

Figure 3.5: An example illustrating how the flow allocated in MaxAggFlow translates to constraints
on the flow to be allocated in MaxClusterFlow at two different clusters.

e Figure 3.5 shows two examples on the right where the virtual nodes are drawn using
squares.

e Figure 3.5 also shows the NoMoreFlowThruCluster constraints for demands from
sources in the red cluster to targets in the black cluster (depicted as = and z respec-
tively). On the aggregated graph, the flow for this demand takes the two paths shown.
In the red cluster, as shown in the equation, the traffic from all sources (), along mul-
tiple paths (r) to the virtual node, is restricted to be no more than what was allocated
in f;.

e Figure 3.5 on the right also shows a more complex case that happens in the yellow
cluster. Here, the traffic arrives at one virtual node but can leave to multiple virtual
nodes. In MaxClusterFlow, we set up paths between all pairs of virtual nodes. As
shown in the equation, the traffic leaving the red virtual node on paths (r) to either of
the other virtual nodes must be no more than the total flow on paths p and ¢ from f;.

e Observe that bundling demands ensures fewer variables and constraints for Max-
ClusterFlow. The demand from red to black clusters comprises twenty node pairs
in the actual graph in Figure 3.3 (left); four sources in the red cluster and five targets
in the black cluster. However, the MaxClusterFlow for the red cluster only has four
bundled demands, from each source to the virtual node, and the yellow cluster has

just one bundled demand from and to virtual nodes.

In the third step, we reconcile end-to-end; that is, we find the largest flow that can be
carried along each path on the aggregate graph. As shown by MinPathE2E in Figure 3.4,
for each bundle of demands and each path, we take the minimum flow allocated (fJ) at

each cluster on the path.

CHAPTER 3. NCFLOW 26

Problem # of Nodes # of Edges # of Commodities
MaxFlow N M K
MaxAggFlow n < min(M, n?) < min(K,n?)
MaxClusterFlow ~ ~ 2 ~ o 20

Table 3.2: Sizes of the problems in Figure 3.4 using notation from Tables 2.1 and 3.1. Just verifying
that flow is feasible (i.e., FeasibleFlow in Equation 2.1) uses O(K + M) number of equations
and O(K) variables. NCFlow has one instance of MaxAggFlow and executes the 7 instances of
MaxClusterFlow in parallel. MinPathE2E and SrcTargetMax are relatively insignificant.

The flow allocation for the demands in a cluster = can be read directly from the fX
solution of MaxClusterFlow. For demands that span clusters, however, more work remains
because the steps thus far do not directly compute their flow. In particular, f3 allocates
flow for cluster bundles, such as flows for all demands whose sources are in cluster x and
whose targets are in cluster y. The corresponding per-cluster flow allocations, f3 and f3,
allocate flow from a source node and to a given target, respectively. Thus, in the final step,
SrcTargetMax, we assign the maximal flow to each inter-cluster demand that respects all

previous allocations.

Properties of Basic Flow Allocation

Solver runtime: The numbers of equations and variables in the sub-problems are shown
in Table 3.2. If the number of clusters 7 is 1, note that there is exactly one per-cluster prob-
lem, MaxClusterFlow, which matches the original problem from Eqn. 2.2. When using
a few tens of clusters, we will show in §3.5 that all of the sub-problems are substantially

smaller than the original problem (MaxFlow).

Feasibility: The flow allocated by Figure 3.4 satisfies demand and capacity constraints; we
will prove this formally in §A.1.1. For demands whose source and target are in different
clusters, however, disagreements may ensue since the different problem instances assign
flow to different bundles of edges and demands. We illustrate two such examples in Fig-
ure 3.6; both have 1 unit of demand from s; to ¢; and from s5 to t5. The dashed edges have

a capacity of ¢ < 1 and all of the other edges have a very large capacity.

e The example in Figure 3.6a illustrates an issue with bundling edges. The actual graph

CHAPTER 3. NCFLOW 27

2
by fir— 1 1
fz Sl@ @H
t2 o 7) N,

(a) Disagreement arising from bundling edges: ~ (b) Disagreement arising from bundling de-
As shown on the right, the basic flow allocation ~ mands: As shown on the right, the basic flow al-
algorithm in Figure 3.4 will compute a flow of location algorithm in Figure 3.4 will again com-
2 units, but only 4¢ units of flow can be carried; ~ pute a flow of 2 units, but only 4¢ units of flow
see §3.3.1. can be carried.

Figure 3.6: Two examples that illustrate how disagreements in flow allocation can occur in
NCFlow’s basic flow allocation algorithm.

S1—

(a) For the disagreement problem in Fig- (b) For the disagreement problem in Figure 3.4,
ure 3.6a, a different clustering choice that does a different clustering choice that does not lead
not lead to such a disagreement. to such a disagreement.

Figure 3.7: Impact of different clustering choices in NCFlow.

on the left can only carry 5¢ units of flow for each demand. However, as the figures
on the right show, MaxAggFlow allocates two units of flow since the four edges
between these two clusters can together carry all of the two units of demand. The
MaxClusterFlow instances also allocate two units of flow as shown. The discrep-
ancy arises because the problems in Figure 3.4 do not know that the top egress of the
left cluster can take in all of the demand of s; but has only a low capacity to ¢;.

e The example in Figure 3.6b illustrates an issue with bundling demands. Here too,
observing the actual network on the left will show that 2¢ units can be carried for
each demand split evenly between the top and the bottom path. Again, as the figures
on the right show, the basic flow allocation algorithm will conclude that both units of
demand can be carried. Here, the discrepancy arises from the bundling of demands,
the problems in Figure 3.4 cannot discern that the MaxClusterFlow instance of the
left cluster sends the first demand to the brown cluster while the MaxClusterFlow

of the right cluster wants to receive the second demand from the brown cluster.

CHAPTER 3. NCFLOW 28

Figure 3.8: To guarantee feasibility, each cluster bundle is allocated flow on only one path on the
aggregated graph (left) and on only one edge between each pair of clusters (right); the usable path
and edges are shown in dark red. Note that multiple paths can still be used within clusters.

3.3.2 A feasible heuristic

To avoid end-to-end disagreements, we make two simple changes to the basic flow alloca-
tion algorithm in §3.3.1.

First, when solving MaxAggFlow, only one path on the aggregated graph can be used
for all of the demands between a given pair of clusters; we call such groups of demands to
be cluster bundles. Next, between a pair of connected clusters, only one edge can carry the
flow for a cluster bundle. Figure 3.8 shows in dark red an example path for a cluster bundle
and the allowed edges between clusters; we also show the intra-cluster paths that can carry
flow for this bundle.

There are multiple ways to avoid disagreements while keeping the problem sizes small
via bundling. We discuss the above changes here because they are simple and sufficient.

Specifically, we show that:

Theorem 1. The algorithm in Figure 3.4, when constrained as discussed above, will always

output a feasible flow.

Proof. The proof is in §A.1.2. Intuitively, these changes suffice because the independent
decisions made by different problems in Figure 3.4 cannot disagree; per cluster bundle, all

problem instances allocate flow to the same edge and path. 0

3.3.3 Stepping towards optimality

The flow allocation algorithm described thus far is fast but not optimal; that is, it may al-

locate less total flow over all demands than the flow allocated by solving the larger global

CHAPTER 3. NCFLOW 29

L/
¢ ®

Figure 3.9: In contrast with Figure 3.8, NCFlow produces a different flow allocation in the second
iteration of the algorithm. For the same cluster bundle, NCFlow chooses a different path on the
aggregate graph and also chooses different inter-cluster edges. The chosen paths and edges are
again shown in red.

problem (MaxFlow from Eqn. 2.2). There are a few reasons why this happens. The Max-
AggFlow in Figure 3.4 allocates flow on paths through clusters without knowing how much
flow the clusters can carry. Switching the order, i.e., solving MaxClusterFlow before Max-
AggFlow, could be worse because each cluster must allocate flow without knowing how
much flow can be carried end-to-end. Furthermore, the heuristic in §3.3.2 constrains each
cluster bundle to use only one edge between clusters and one path on the aggregated graph.
We now discuss a few extensions to increase the flow allocation.

First, we re-solve the problems in Figure 3.4 multiple times. A simple way to do this
would be to deduct the allocated flow and use the residual capacity on edges in the next
iteration. Also, we pick different edges between clusters and/or different paths on the
aggregated graph in different iterations (see Figure 3.9 for an example). The number of
iterations is configurable; we continue as long as the total flow increases in each iteration
by at least a pre-specified amount (say 5%). One could apply other policies such as a
timeout. We show in §3.5 that a small number of iterations suffice for a sizable increase
in the total flow. We will also show that later iterations finish faster than the first iteration,
perhaps because there are fewer demands remaining to satisfy.

Next, we empirically observe that the choice of clusters and edges/paths to use in differ-
ent iterations has an effect on flow allocation. For instance, the disagreements in Figure 3.6
go away by using a different choice of clusters—specifically, see Figure 3.7a and Fig-
ure 3.7b. We discuss how NCFlow precomputes cluster and edge/path choice in §3.3.4.

To sum up, we prove that flow allocation will be optimal when a few sufficient condi-
tions hold:

CHAPTER 3. NCFLOW 30

Theorem 2. The method in Figure 3.4 leads to the optimal flow allocation when any path
can be used within each optimization and the number of clusters is 1; or the number of

clusters is equal to the number of nodes, or all of the following conditions hold:

o The aggregated graph G, is a tree.
e Only one edge connects any pair of clusters.

o All demands are satisfiable.

Proof. By optimal, we mean that the total allocated flow must be as large as an instance
of Equation A.4 wherein any path can be used. The proof is in §A.1.3. Intuitively, when the
number of clusters is 1 and any paths can be used, a single instance of MaxClusterFlow is
identical to the optimal problem in Equation A.4. Similarly, when the number of clusters
equals the number of nodes, MaxAggFlow is identical to the optimal problem. Further-
more, the conditions listed lead to optimality because the optimal flow allocation can be

transformed into an allocation that can be outputted by Figure 3.4. [

Even though the listed conditions appear restrictive, note that the topology within clus-
ters can be arbitrary. We will show in §3.5 that NCFlow offers nearly optimal flow alloca-

tions even when the above conditions do not hold.

3.3.4 Choosing clusters and paths

The choice of clusters and paths affects both the solution quality and runtime of NCFlow.

We cast cluster choice as a graph partitioning problem [33, 104, 137] with these objectives:

e Concentrated with a low cut: NCFlow can output better flow allocations when
much of the total demand and the total edge capacity is between nodes in the same
cluster.

e Balanced cut: Intuitively, NCFlow will have a smaller runtime when the complexity
of MaxAggFlow balances with that of MaxClusterFlow. Recall from Table 3.2 that
the former depends on the number of clusters whereas the latter depends on the size

of the largest cluster.

CHAPTER 3. NCFLOW 31

We empirically observe, based on experiments with many WANs and different types of

demands, that:

e On a graph with N nodes, about v/N clusters, irrespective of the clustering tech-
nique, leads to the best result, i.e., smallest runtime and fewest forwarding entries
while allocating nearly the largest amount of flow possible; see Figure 3.12.

e When choosing the same number of clusters, one of the three considered clustering
techniques (described below) generally performs better than the others but not in all

cases; see Figure A 4.

Thus, the optimal clustering choice for a WAN is unclear; it is possible that hand-tuning
or using a learning technique may lead to better-performing clusters. Nevertheless, any of
the three simple clustering schemes discussed below already suffice for NCFlow to improve
substantially over baselines.

We consider the following clustering choices because they are simple and fast; unless

otherwise noted, results in this paper use FMPartitioning.

e FMPartitioning [26,42] divides nodes into clusters so as to maximize a “modularity”
score which prefers more edges to lie within than between clusters. In NCFlow, we
apply modularity-based clustering with edge weights set to their capacity.

e Spectral clustering [107] computes eigenvectors of the weighted adjacency matrix
and chooses a desired number of the top eigenvectors as cluster heads; each node is
assigned to the cluster of their closest eigenvector (e.g., using k-means).

e Leader Election picks a desired number of nodes at random as leaders and assigns
each other node to the closest leader; wherein, distance is measured as the path length

using invcap edge weights.

Some other clustering techniques [83, 104, 137] can balance cluster sizes or trade-off
between concentration and balance but are more complex computationally; it is possible

that using such schemes can further improve NCFlow.

Path choice in NCFlow: On the aggregated graph and on each cluster graph, we pre-
compute offline a small number of paths between every pair of nodes. We consider the
following different path choices and pick paths that lead to the largest flow allocation on

historical demands:

CHAPTER 3. NCFLOW 32

e k-shortest paths [144] with edge weight of 1 or é where c, 1s the capacity of edge e
and k = 4,8 or 16.

e As above, but with the additional requirement that the paths for a node pair are edge-
disjoint [105].

NCFlow also pre-computes offline i) a pseudo-random choice of which edges to use
between a pair of connected clusters in each iteration, and ii) which path on the aggregated

graph to use for each cluster bundled demand in each iteration.

3.3.5 Setting up switch forwarding entries

NCFlow uses many fewer switch forwarding entries than prior works due to the following
reasons.

First, the paths along which NCFlow allocates flow can be thought of as a sequence of
pathlets [64, 90, 141] in each cluster connected by crossing edges between clusters. Fig-
ures 3.8 and 3.9 illustrate such paths on the right. This observation is crucial because a
pathlet can be reused by multiple demands. For example, in Figure 3.8, the flow from any
source in the red cluster to any target in the grey cluster would use the same pathlets shown
in the yellow, green, and blue clusters. Prior work [71,72], on the other hand, establishes
paths for each demand. Using pathlets has two advantages. The number of pathlets used by
NCFlow is about 7 times less than the number of paths used by prior works.! Furthermore,
a typical pathlet has fewer hops than a typical end-to-end path. Thus, NCFlow uses many
fewer rules to encode paths in switches.

Next, whenever NCFlow allocates flow at the granularity of cluster bundles, all of the
demands in a bundle take the same paths and are split in the same way across paths. Hence,
NCFlow uses one traffic splitting rule for all demands in such bundles. For instance, the
demands from source s in the red cluster in Figure 3.8 to any target in the grey cluster are
split with the same ratio across the same pathlets in all clusters (except the grey cluster

where they take different pathlets to reach their different targets). Thus, with NCFlow, the

"More precisely, the number reduces from PN(N — 1) to . P(N,)(N, — 1) where P is the number
of paths per node pair, the N nodes are divided into 7 clusters, and cluster « has N, nodes. If clusters are
evenly sized, N, = N/n, and the ratio of these terms is ~ 7).

CHAPTER 3. NCFLOW 33

number of splitting rules at a source decreases by a factor of v/ N /22

The paths and splitting rules to push into switch forwarding tables are determined by
the offline component of NCFlow and only change occasionally. After each allocation,
only the splitting ratios change. More details on the data-plane of NCFlow such as how to
compute the total flow that can be sent by each demand and the splitting ratios as well as
how to move packets from one pathlet to the next are in section A.2. In §3.5, we measure

the numbers of rules used by NCFlow.

3.4 Implementing NCFlow

Our current prototype of NCFlow is about 5K lines of Python code, which invokes Gurobi [68]
v8.1.1 to solve all of the optimization problems. For clustering WAN topologies, we
adapt [43] to find clusters that maximize modularity; we also use our own implementa-
tion of NJW spectral clustering [107]. We use a grid search over the number of clus-
ters (n) and the above clustering techniques to identify the best performing choice for
each topology on a set of historical traffic matrices. To compare with state-of-the-art tech-
niques, we customize the public implementations of SMORE [86, 87] and TEAVAR [27].
We have also implemented Fleischer’s algorithm [53]; our implementation is about 10 X%
faster than public implementations [74]3 since we carefully optimize a key bottleneck in
Fleischer’s algorithm. All of these code artefacts are available on GitHub at https:
//github.com/stanford-futuredata/pop-ncflow.

3.5 Evaluation

We evaluate NCFlow on several WAN topologies, traffic matrices, and failure scenarios to

answer the following questions:

e Compared to state-of-the-art LP solvers and approximate combinatorial algorithms,

does NCFlow offer a good trade-off between runtime and total flow allocation? Is it

2A source uses N — 1 splitting rules in prior works but with NCFlow only requires N, +7 — 2 rules when
the source’s cluster has N, nodes; if clusters are evenly sized and 1 ~ /N, the ratio of these terms is v/ N /2.
3https://github.com/eigenpi/mcf_solver

https://github.com/stanford-futuredata/pop-ncflow
https://github.com/stanford-futuredata/pop-ncflow
https://github.com/eigenpi/mcf_solver

CHAPTER 3. NCFLOW 34

Topology | #Nodes #Edges | # Clusters
PrivateLarge ~ 1000s ~ 1000s 31
Kdl 754 1790 81
PrivateSmall ~ 100s ~ 100s 42
Cogentco 197 486 42
UsCarrier 158 378 36
Colt 153 354 36
GtsCe 149 386 36
TataNId 145 372 36
DialtelecomCz 138 302 33
Ton 125 292 33
Deltacom 113 322 30
Interoute 110 294 20
Uninett2010 74 202 24

Table 3.3: Some of the WAN topologies used in our evaluation; see §3.5.1. The networks in blue
are publicly available topologies from the Internet Topology Zoo [82]; they can be found at http:
//www.topology—zoo.org/.

substantially faster, with only a small decrease in total flow?
e For real-world TE scenarios, in which flow solvers must adapt to changing demands
and faults, how much benefit does NCFlow offer relative to the state-of-art?

e How do our various design choices in NCFlow impact its performance?

3.5.1 Methodology

Here, we describe our methodology—the topologies, traffic, baselines, and metrics used in

our evaluation.

Topologies: We use two real topologies from a large enterprise—PrivateSmall is a pro-
duction internet-facing WAN with hundreds of sites, and PrivateLarge is a larger WAN
that contains many more sites. We also use several topologies from the Internet Topology
Zoo [82] and reuse topologies used by prior works [27,76]. Table 3.3 shows details for
some of the used topologies; note that the topologies shown are 10x to 100x larger than
those considered by prior work [27,71,76, 86, 96].

Traffic Matrices (TMs): We benchmark NCFlow on traffic traces from PrivateSmall,

http://www.topology-zoo.org/maps/Kdl.jpg
http://www.topology-zoo.org/maps/Cogentco.jpg
http://www.topology-zoo.org/maps/UsCarrier.jpg
http://www.topology-zoo.org/maps/Colt.jpg
http://www.topology-zoo.org/maps/GtsCe.jpg
http://www.topology-zoo.org/maps/TataNld.jpg
http://www.topology-zoo.org/maps/DialtelecomCz.jpg
http://www.topology-zoo.org/maps/Ion.jpg
http://www.topology-zoo.org/maps/Deltacom.jpg
http://www.topology-zoo.org/maps/Interoute.jpg
http://www.topology-zoo.org/maps/Uninett2010.jpg
http://www.topology-zoo.org/
http://www.topology-zoo.org/

CHAPTER 3. NCFLOW 35

which contain the total traffic between node pairs at 5-minute intervals. We also generate

the following kinds of synthetic traffic matrices for all topologies:

° Poisson()\, 6) models demands with varying concentration; the demand between
nodes s and ¢ is a Poisson random variable with mean Aédst, where dg; is the hop
length of the shortest path between s and t and § € [0,1) is a decay factor. We
choose d close to 0 or to 1 to model strongly and weakly concentrated demands,
respectively.

e Gravity (v) [18, 123]: The total traffic leaving a node is proportional to the total
capacity on the node’s outgoing links (parameterized by v); this traffic is divided
among other nodes proportional to the total capacity on their incoming links.

) Uniform([O, a)): The traffic between any pair of nodes is chosen uniformly at ran-
dom, between 0 and a.

° Bimodal([O, a),[b,c), p) [18]: A p fraction of the node pairs, chosen uniformly at
random, receive demands from Uniform([b, c)) while the rest receive demands from
Uniform([0, a)). We use p = 0.2.

For each above model, we select parameters such that fully satisfying the traffic matrix
leads to a maximum link utilization of about 10% in each topology. Then, we scale all
entries in the TM by a constant o € {1,2,4, 8,16, 32,64, 128}. Doing so creates demands
that range from easily satisfiable to only partially satisfiable; with o« = 128, the satisfiable
portion of the demand varies between 25-70%. We generate five samples for each traffic

model and scale factor for each topology.
Baselines: We compare NCFlow with these techniques:

Path Formulation (PF,) solves the multi-commodity max-flow problem shown in Equa-
tion 2.2 using k-shortest paths between node pairs where k& = 4. Results for other path

choices are in §A.6.4.

PF Warm Start (PF,,) matches PF, except that it allows the LP solver to “warm start”;
that is, over a sequence of traffic matrices, the flow allocated to the previous TM is used
as a starting point to compute allocation for the next TM. When traffic changes are small,

warm start leads to faster solutions.

CHAPTER 3. NCFLOW 36

CSPF: We implement Constrained Shortest Path First [58], a greedy heuristic that we pre-
viously described in §2.3.

Approximate Combinatorial Algorithms: Fleischer’s algorithm [53] is the best-known
approximation for MaxFlow. We use two variants: Fleischer-Path where flow is restricted
to a path set and Fleischer-Edge without any path restrictions. We show results here for
an approximation guarantee of 0.5; that is, the techniques must achieve at least half of the

optimal flow allocation.

SMORE [86] allocates flow dynamically on paths that are pre-computed using Récke’s
Randomized Routing Trees (RRTs). We use the code from [87] to compute paths. Since
the LP in [87] requires demands to be fully satisfiable, we implement a variant, SMORE*,

that maximizes the total flow on the computed paths, regardless of demand satisfiability.

TEAVAR [27] models link failure probabilities and computes flow allocations given an
availability target* We implement a variant, TEAVAR*, that maximizes the total flow?;

further details are in section A.5.

Clusters, Paths, and # of Iterations: Table 3.3 shows the number of clusters used by
NCFlow per topology. Here, we report results on edge-disjoint paths, chosen using in-
verse capacity as the edge length; results for other path choices are qualitatively simi-
lar (see §A.6.4). All schemes that use paths (i.e., PF4, Fleischer-Path, TEAVAR?*, and
NCFlow) use the same method to compute paths. For each iteration up to Z = 6, we also
pre-compute offline the path to use on the aggregated graph, and the edge to use between

connected clusters for each cluster bundle.

Metrics: We compare the schemes on the following metrics:

¢ Relative total flow is the total flow achieved by a scheme relative to PF,.

e Speedup ratio is the runtime of each scheme relative to PF,. For LP-based methods,
we report the Gurobi solver runtimes, since models can be constructed once offline
in practice. For combinatorial methods, we report algorithm execution time. All

runtimes are measured on an Intel Xeon 2.3GHz CPU (E52673v4) with 16 cores and

“The open-source code for TEAVAR can be found at https://github.com/manyaghobadi/
teavar.
STEAVAR solves the Maximum Concurrent Flow objective; see Table 2.2.

https://github.com/manyaghobadi/teavar
https://github.com/manyaghobadi/teavar

CHAPTER 3. NCFLOW 37

==+ CSPF — =« Fleischer-Path, € = 0.5 - NCFlow
== SMORE* «=::- Fleischer-Edge, € = 0.5
1.0+ >

7]

(¢)]

@ 0.75-
o
s 1

c 05
= Better

E 0.25+
L

0.0]] ! i .
0.2 0.4 0.6 0.8 1.0 1.2
Total Flow, relative to PF4
(a) CDF of total flow relative to PF4

1.0
0.75+

0.51
0.25+

0.01

107 10 100 102 108
Speedup, relative to PF4 (log scale)

(b) CDF of speedup relative to PF,

Figure 3.10: CDFs comparing NCFlow with state-of-the-art methods. With only a modest decrease
in total flow, NCFlow offers a substantial runtime speedup.

112 GB of RAM.

e FIB Entries: We measure the number of switch forwarding entries used.

3.5.2 Comparing NCFlow to the State of the Art

Figures 3.10a and 3.10b show cumulative density functions (CDFs) of the relative total
flow and speedup ratio for NCFlow and several baselines. These results consist of 2,600

traffic matrices and 13 topologies. If a scheme matches the baseline PF, its CDF will be a

CHAPTER 3. NCFLOW 38

—@— NCFlow =>¢ = Racke == KSP = = Edge-Based

’a 106
© 2 ':"'—":'
2 . 10%] U -
o % ':i‘:f-_ﬁf-—"—"—“
(@)) ’-’ 4.
4| - v
S = 10% g ouleT
k) : | .
-
o 8 e
10 i -----llll .
M —
E (U107 ‘--‘-A"---- -"-_—-:— =
v O 6 R S —0
G = 10 e =
1051 & .
202 204 372 486 1790

of Edges (log scale)

Figure 3.11: Comparing the number of forwarding entries used by various methods for the experi-
ments from Figure 3.10.

pulse at x = 1 in both figures; the fraction of cases to the left (or right) of x = 1 indicate
how often a scheme is worse (or better) than PF,. Note that the x-axis for the speedup ratio
is in log scale.

We see that SMORE®, shown using green dashed lines in the figures, modestly im-
proves the flow allocation (in 25% of the cases) while almost always taking longer to run
than PF,. Both effects are because SMORE* allocates flow on Ricke’s RRTs instead of
k-shortest paths.

The edge and path variants of Fleischer’s, shown using purple and red lines in the
figures, perform similarly; since they are approximate algorithms, they allocate less flow
than PF, in roughly 50% of cases, but are also faster than PF, in slightly less than 50% of
cases. We conclude that these approximate algorithms are not practically better than PF.

In contrast, NCFlow, shown with dark blue lines in the figures, almost always allo-
cates at least 80% of PF,’s total flow, while achieving large speedups. In the median case,
NCFlow achieves 98% of the flow and is over 8x faster. These improvements accrue from
NCFlow solving smaller optimization problems than PF,.

Figures A.2 and A.3 tease apart the above results by load, traffic type and topology. Fig-

ures A.6—A.9 show results for alternate path choices. Taken together, these results indicate

CHAPTER 3. NCFLOW 39

1.0 i, e 103~
LE" e .\-5*2/' @ &
o 081 \A\ o __
.8 N A\A 5 -I—' 9
E' 0.61 === Total Flow Relative 10 E’ O
= 04 # of FIB Entries “~ Speedup S o
g0 L1015 2
40-3 0 2- 8
= Q
wn
0.05 - - - - 10°
0 50 100 150 200

of Clusters

Figure 3.12: NCFlow’s performance when using different numbers of clusters on PrivateLarge.
The speedup ratio is plotted on the right y-axis in log scale; the other metrics use the left y-axis.

that NCFlow’s improvements hold across a variety of scenarios.

For the same experiments considered above, Figure 3.11 shows the number of switch
forwarding entries used in different topologies. (A full set of results is in Table A.1.) The
bottom plot is the total number of forwarding entries across all switches, while the top
shows the maximum for any switch. Note that both the x and y axes are in log scale.
NCFlow consistently uses fewer forwarding entries; using NCFlow offers a greater amount
of relative savings than switching from all edges to just a handful of paths per commodity.
The savings from NCFlow also increase with topology size. The reason, as noted in §3.3.5,

is that NCFlow reuses pathlets and traffic splitting rules for many different commodity.

3.5.3 Effect of Design Choices

Figure 3.12 shows how NCFlow’s performance varies with the numbers of clusters used
on PrivateLarge. While NCFlow allocates roughly the same amount of total flow, us-
ing about 30 clusters improves runtime and reduces forwarding entries. Figure A.4 com-
pares NCFlow’s performance when using different clustering techniques; more details are
in §A.6.2.

Recall from §3.3.3 that NCFlow uses multiple iterations of Figure 3.4. In the above

experiments, the first iteration alone accounts for 75% of the runtime and for roughly 90%

CHAPTER 3. NCFLOW 40

.000

—— NCFlow —- PFy,

Total Flow,
rel. to PF4
(@) =

=
o
o

N
U

Speedup, rel. to PF,
(0]
o

2.5 .
0 5 10 15 20 25
Time (days)

Figure 3.13: Allocated flow and speedup relative to PF4 on a sequence of production TMs from
PrivateSmall. In half of the cases, NCFlow allocates at least 98.5% of the flow and is at least 8.5
faster.

of the flow that is allocated by NCFlow. Later iterations are faster perhaps because they
have less traffic to consider.

Breaking down the runtime by the steps in Figure 3.4, we see cases where MaxClus-
terFlow accounts for over 70% of NCFlow’s runtime perhaps because the largest cluster
contains a large fraction of the nodes. Better cluster choice or recursively dividing the

largest clusters can further lower runtime.

3.5.4 NCFlow on Real-World Traffic

Here, we experiment with a sequence of traffic traces collected on the PrivateSmall WAN.
Figure 3.13 plots the moving average (over 5 windows) of the total flow and speedup rel-
ative to PF, for two schemes—NCFlow in blue and PF,, in light blue. The figure shows
that PF,,,’s warm start yields a median speedup of 1.66x. NCFlow achieves a consistently
higher speedup (8.5 in the median case), and the flow allocation is nearly optimal: the

median total relative flow is 98.5%, and NCFlow always allocates more than 93%.

CHAPTER 3. NCFLOW 41

Instant PF;, =— NCFlow PF; =+ PF4u

100% 1

80%

60%

40%

Satisfied Demand

20% 1

0%

0 20 40 60 80 100 120
Time (mins)
Figure 3.14: When demands change, how solver runtimes affect flow allocation on PrivateLarge:
Due to the slow runtime, PF4 and PF4, carry only 62% of the traffic that can be satisfied by

Instant PF,4, a (hypothetical) scheme which has zero runtime. NCFlow carries 87% of the traf-
fic since its faster runtime compensates for its sub-optimality.

3.5.5 Tracking Changing Demands

Here, we evaluate the impact of a technique’s runtime on its ability to stay on track with
changing demands. Specifically, on the PrivateLarge topology, we use a time-series of
traffic matrices, wherein a new TM arrives every five minutes and the change from one TM
to the next is consistent with the findings in Figure 2.3. At each time-step, all techniques
have the opportunity to compute a new allocation for the current TM or to continue com-
puting the allocation for an earlier TM if they have not yet finished; in the latter case, their
most recently computed allocation will be used for the current TM. For example, a tech-
nique that requires five minutes to compute a new allocation will be always one window
behind, i.e., each TM will receive the allocation that was computed for the previous TM.
Figure 3.14 shows the fraction of demand that is satisfied by three different schemes;
we also show the value for an instantaneous scheme which is not penalized for its runtime.

PF,’s average runtime here is over 15 minutes; hence, as the orange dashed line shows,

CHAPTER 3. NCFLOW 42

PF, is able to compute a new allocation only for every third or fourth TM. This leads to
substantial demand being unsatisfied: for node pairs whose current demand is larger than
before, PF, will not allocate enough flow. On the other hand, node pairs whose current
demand is less than their earlier demand will be unable to fully use PF,’s allocation. As
the figure shows, PF, only satisfies 53% of the changing demand on average, whereas
Instant PF, satisfies 87% of the demand.

PF4, (the dash-dot light blue line), where the solver warm starts using the previous
allocation, is modestly faster than PF, on average. As the figure shows, the average demand
satisfied by PF,,, is only slightly larger than PF, (about 54%).

In contrast, NCFlow (the solid dark blue line) finishes well within five minutes which
allows allocations to change along with the changing demands. We find that on average
NCFlow satisfies 75% of the demands; its smaller runtime more than makes up for sub-

optimality, allowing NCFlow to carry more flow than PF, when demands change.

3.5.6 Handling Failures with NCFlow

Here, we evaluate the effect of link failures. As we note in §A.5, TEAVAR* did not finish
within several days on any of the topologies listed in Table 3.3 because when all possible
2-link failure scenarios are considered, the number of equations and variables in the op-
timization problem increase from O(N?) for MaxFlow to O(M?2N?) for TEAVAR [27],
where NV and M are the numbers of nodes and edges, respectively. Hence, we report re-
sults on the 12-node, 38-edge WAN topology from B4 [76]. We generate synthetic traffic
matrices as noted in §3.5.1. Using link failure probabilities from the open-source TEAVAR
implementation, we generate several hundred failure scenarios and, for each TM, we mea-
sure the flow carried by NCFlow and TEAVAR* before the fault, immediately after the
fault, and after recovery.

A key difference in fault recovery between NCFlow and TEAVAR* is that TEAVAR*
requires sources to rebalance the traffic splits when a failure happens; doing so takes about
one RTT on the WAN. Given a parameter 3, TEAVAR* guarantees that there will be no
flow loss after the tunnels re-balance with a probability of 1 — 3. See §A.5 for more details.

We use 3 = 0.99, as recommended in [27]. NCFlow, on the other hand, recomputes flow

CHAPTER 3. NCFLOW 43

= . .
& (o)) (o)

CDF (over faults)

o
N

0

NCFlow before fault
NCFlow after recompute
NCFlow after fault
TEAVAR* before fault
TEAVAR* after re-balance
TEAVAR* after fault

satal

-0.1
Loss = 1 - (Flow carried by scheme/ Flow carried by PF, when no fault)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(a) CDFs of the flow loss before faults, immediately after faults and after recovery (B4 topology,
many traffic matrices and faults; see §3.5.6).

NCFlow == TEAVAR* = = TEAVAR = = 1+
1
<
& — - .ﬁ - - - - - - — 0 8 [~
o 0.8 i 4 Q
+ - e mmC a >
z N © —
S NCFlow recomputes T 0-6
-+ 06 [- - o
G : 2
v 204
R . ey e o mm o mmw mm L
z 0.4 1 = d S
o : - : 0.2
L - ﬁ - '
< 0.2 : Tunnels rebalance
© A _ . ‘
o Fad:t happens : 0
0 : o o 0 5 101520
" Time”’ Recompute Time (ms)

(b) Timelapse of when a fault occurs (B4 topology, Uniform traf- (¢) NCFlow’s time to re-
fic matrix, 8 = 0.99) compute after fault.

Figure 3.15: Comparing failure response of NCFlow with prior work.

allocations taking into account the links that have failed; doing so takes one execution of

NCFlow and some RTTs to change the traffic splits at switches; more details are in §A.4.

CHAPTER 3. NCFLOW 44

Figure 3.15c shows that the recomputation time is well within one RTT on the WAN.

Figure 3.15b shows a timelapse of the flow carried on the network before the fault,
immediately after the fault, and after recovery. As the figure shows, TEAVAR* can have a
smaller loss and for a shorter duration; i.e., until sources rebalance traffic while NCFlow
can carry more flow before fault and after recovery; moreover, the fast solver time can
reduce the duration of loss.

Figure 3.15a shows CDFs over many faults and traffic matrices for NCFlow and TEAVAR™.
We record the flow loss at three stages: before the fault, immediately after the fault, and af-
ter recovery. As the figure shows, NCFlow’s ability to carry more flow before the fault and

after recovery more than compensates for the slightly larger loss it may accrue in between.

3.6 Discussion

Extending beyond MaxFlow: FeasibleFlow is a common constraint for many objectives
beyond MaxFlow (see Table 2.2). Since the algorithm in §3.3.1 and the heuristic in §3.3.2
guarantee feasibility, NCFlow can apply to objectives beyond MaxFlow; however, we be-

lieve that more work is needed to improve the solution quality for different objectives.

Optimality guarantee: In §A.8, we show that constraining by clusters and paths, as done
by NCFlow, does not necessarily reduce the flow allocation; that is, nearly the maximum
amount of flow can be carried while respecting clustering and path constraints. This is
promising because a better heuristic (than Figure 3.4) may allocate more flow without
losing the benefits of solving smaller per-cluster problems. Furthermore, although NCFlow
achieves sizable speedups by using simple clustering methods, the optimal cluster choice

is uncertain; we show examples in §A.7 to illustrate the challenges.

Recursive (or multiple levels of) clusters: For large topologies or when the largest cluster
has a disproportionate number of nodes, we can further divide a cluster into sub-clusters.
Doing so is an extension of the algorithm in Figure 3.4 where, in the iterative step, the
MaxClusterFlow problem at a cluster is replaced with a new instance of all of the steps
in Figure 3.4 along with the additional constraints that arise from the current level (e.g.,

NoMoreFlowThruCluster constraints). We leave further details to future work.

CHAPTER 3. NCFLOW 45

NCFlow is agnostic to the underlying solver used for the problems in Figure 3.4 and can

benefit from future improvements to LP solvers and approximate methods [53,59, 80].

Further use cases: Beyond serving as a drop-in replacement for today’s production WAN
traffic controllers, NCFlow can be used whenever fast and close-to-optimal solutions are
desirable such as: when allocating flow for future time-steps [77,79] or to compare topol-

ogy changes [22,37] or to accelerate the training of ML-based routing systems [135].

3.7 Related Work

NCFlow builds upon a few themes in prior work. We discuss and evaluate against some

prior works already. To recap:

e Some large enterprises use path-based global optimization problems similar to MaxFlow
to manage traffic on their WANs [71,72,76]. We saw in §3.5 that doing so does not
scale to the WAN topologies of today or the future, which consist of thousands of

sites.

e We saw that approximate algorithms for multi-commodity max flow, such as [53],
require a large number of switch forwarding entries since they can send flow along
any edge. Also, NCFlow allocates more flow and is faster compared to path-based

versions of these algorithms.

e Probabilistic fault protection schemes such as TEAVAR [27] take an infeasibly long
time to run on large topologies when considering multiple link failures; they also
allocate less flow to reserve capacity to deal with possible failures. Other oblivious
techniques [17, 18, 27, 86, 96, 139] have a similar trade-off. Quickly recomputing
using NCFlow trades off slightly more loss after a fault to carry much more traffic

before the fault and after recomputation.

Hence, we believe that NCFlow is better suited to enterprise WANSs, which target very
high link utilization and have traffic that is elastic to short-term loss (e.g., scavenger-class

traffic, such as replicating large datasets [71,76,96]). Here, we discuss other related work.

CHAPTER 3. NCFLOW 46

TE on WANSs: Typically, a WAN node is not a single switch, but rather a group of switches
connected in a specific way such as a full mesh. Similarly, a WAN edge is a systematic
collection of links between many switches. [72] discusses how to hide the intra-node con-
nectivity from the global TE solution. NCFlow complements this technique; it can use a
similar intra-node scheme and can support WANs that are 10x larger than were consid-
ered in [72]. The specific contraction used by NCFlow—node clusters with large capacity
and/or demand between themselves—also differs from the contractions used in route plan-
ning [1,11,23]. Some BGP-based TE schemes [41, 125, 143], which address how best to
move traffic between different (BGP) domains, are also complementary to NCFlow which
considers the WAN of a single enterprise (domain). Other TE schemes use different proto-

cols, such as OSPF, or work over longer timescales (e.g., hours to days) [56,77,89, 101].

Multi-Commodity Flow Solutions: Both the edge- and path-based LP formulations are
well-studied [24, 140]. Some prior work considers the case of a single commodity, i.e., one
source and target, and does not directly extend to the case of multiple commodities [70,
94, 113]. The best-known approximate algorithms for multi-commodity flow problems
incrementally allocate flow on the shortest path and increase the length of all edges on that
path [25,53,59, 80]. For the problem sizes considered here, LP solvers such as Gurobi are
faster in practice, perhaps because they take larger steps towards the optimal allocation.
There is also prior work that customizes the LP solver to improve performance on flow
problems [38,97]. NCFlow is agnostic to the solver used; that is, NCFlow can use any fast

solver for the sub-problems in Figure 3.4.

Decompositions: Using standard decomposition techniques for large optimization prob-
lems, such as Dantzig-Wolfe and Benders [24,29], for multi-commodity flow problems has
led to inconclusive results [61, 111]; i.e., not consistently faster than MaxFlow. NCFlow
can be thought of as a problem-specific decomposition that leverages the observation that

both capacity and demands are concentrated in today’s WANS.

CHAPTER 3. NCFLOW 47

3.8 Summary

In this chapter, we presented NCFlow, a fast and practical solution for traffic engineering
on large WANs. We use geographic partitioning and leverage the concentrated nature of
demands and topologies to divide nodes into clusters and solve sub-problems per cluster
and on the aggregated graph. Our heuristics guarantee feasibility and empirically achieve
close-to-optimal flow allocations. By reusing pathlets and splitting rules across demands,
we require fewer forwarding entries in switches. Empirically, on topologies that are over
10x larger than were considered in prior work and many traffic matrices, NCFlow is 8.2x
faster than the state of the art, while allocating 98.8% of the total flow and using 6 x fewer
forwarding entries in the median case. We demonstrate that NCFlow offers sizable benefits
when tracking changing demands and reacting to failures. As enterprise WANSs continue
to grow, we believe techniques such as NCFlow can enable improved traffic orchestration

and higher utilization.

Chapter 4

POP

4.1 Introduction

In this chapter, we introduce POP, our second technique for traffic engineering based on
commodity-based partitioning. Like NCFlow, POP is faster than the state of the art but only
sacrifices a small amount of flow. Additionally, POP supports multiple TE objectives, such
as maximum total flow, maximum concurrent flow, and min-max link utilization. Because
of its performance and generality, we believe that, just like NCFlow, POP is a suitable
choice for traffic engineering on large-scale WANSs.

To understand the motivation behind POP, we first examine the underlying computa-
tion involved in state-of-the-art TE today. As we discussed in Chapter 2, the centralized
approach requires solving a mathematical optimization problem, which is typically a lin-
ear program. (Refer to Table 2.2 for examples.) Unfortunately, solving these mathematical
programs can be computationally expensive: the worst-case complexity for linear programs
is approximately O(n*3") [44,91], where n is the number of problem variables. Even
though LPs can sometimes be solved faster, this depends on the problem structure and the
numerical solver used. For large-scale WANSs, these LPs can have millions of variables
(e.g., k variables for every commodity, where % is the number of paths per commodity) and
even more constraints. Naturally, this leads to long solution times, which we demonstrated
in Figure 1.2. Heuristics offer an alternative, but they often make assumptions too strong

for the problems at hand and produce sub-optimal results, as we discussed in §2.3.

48

CHAPTER 4. POP 49

— Sub-problem #1

SEA | SFo | DFW | cHI | NvC | ATL

Traffic Matrix

SEA | sFo | DFW | cHI [Nvc | ATL

sFo | 1.1 0.8 | 0.9 | o.

Hou | e.g | 1.1 1.2 | 1.0 | e.8

Nve [1.2 |1 1.2
NYC 2 1| es

ATL s | 0.7 1

WAN Topology — Random assignment Sub-problem #2

SEA | SFo | DFW | cHI | NvC | ATL
CE j ;

Figure 4.1: Overview of POP’s commodity-based partitioning strategy for [= 2 sub-problems
on a fictitious topology and traffic matrix. The commodities are assigned randomly to one of the
sub-problems; the capacities are split evenly.

NCFlow addressed this problem by partitioning the WAN into geographic clusters; be-
cause each cluster could now be solved independently, the total number of variables across
the resultant set of LPs paled in comparison to the original LP. But the downside of ge-
ographic partitioning is that it created a reconciliation problem: disagreements between
two or more clusters on inter-cluster commodities could end up with O allocated flow, a
worst-case scenario that can occur when the traffic matrix overwhelms the WAN topology
and links become oversubscribed. (We discuss how this situation can occur in more detail
in Chapter 5.)

Instead, we wish to devise an alternative strategy that still partitions the WAN and traffic
matrix but preserves the underlying topological structure: rather than omit or bundle links
due to clustering, we wish to keep the existing topology in place with our partitioning. We
also note that the TE problem has other exploitable properties: although the number of
commodities and links are both large, each commodity typically requests a small fraction
of the total available capacity, and the link capacities are fungible or substitutable—a com-
modity can make similar progress using different links, so long as the links belong to the
commodity’s set of available paths.

Because of these characteristics, we deem the traffic engineering LP to be a granular
allocation problem, which we will define in Chapter 4. For such problems, we propose
POP, which stands for Partitioned Optimization Problems. To apply POP, we divide the

commodities randomly among [identical copies of the given WAN topology, each with

CHAPTER 4. POP 50

a subset of the commodities. The randomized strategy is effective here because of the
fungible nature of the problem. Additionally, the link capacities are divided evenly among
the [sub-problems, so that every link is present across every copy of the topology. We call
this approach commodity-based partitioning; Figure 4.1 shows an example of how this can
be applied on a simple WAN and traffic matrix.

After partitioning, each sub-problem has fewer equations and variables, leading to a
super-linear runtime speedup, and we can also execute the sub-problems in parallel. The
overall flow allocation is a simple sum of the allocations from the individual sub-problems.
Our results show that randomly dividing the commodities and evenly dividing the link ca-
pacities among sub-problems works well when commodities are numerous and individually
use only a small fraction of the available capacity in the WAN. Empirically, we show that
POP’s allocations are nearly optimal on several optimization problems, including using
real-world inputs.

A supplemental benefit of POP’s simplicity is that we can reuse the original linear
program formulation on each individual sub-problem; unlike NCFlow, we do not have to
modify the LP, or design new LPs in its stead. This means that we can support multiple TE
objectives—not only maximum total flow, but also maximum concurrent flow and min-max
link utilization—all with just a few lines of code.

In the real world, not all traffic matrices precisely fit the definition of granularity that we
presented above. For example, a traffic matrix could have “large” commodities with sub-
stantial bandwidth demand. Fortunately, in these cases, we can transform the problem into
a granular one using commodity splitting: the “large” commodities can be split into multi-
ple virtual commodities who each receive partial allocations from multiple sub-problems.
Since the number of “large” commodities is small, by definition, POP’s sub-problems re-
main small and still achieve a sizable runtime speedup.

We found that POP is effective on a wide range of topologies and traffic matrices.
Using the same evaluation framework previously applied to NCFlow, we observed that
POP achieves empirical runtime improvements on the maximum total flow objective of up
to 18X in the median case compared to the original problem formulation for maximum
total flow, all while staying within 0.1% of optimality. Additionally, POP achieved a 56X

speedup with a 1.5% reduction in optimality on the min-max link utilization objective, and

CHAPTER 4. POP 51

a 2,500x speedup with a 5% reduction in optimality on the maximum concurrent flow
objective. Lastly, we found commodity splitting to be a useful optimization when applying
POP to “skewed” traffic matrices. Like NCFlow, our implementation is available at the

same URL: https://github.com/stanford-futuredata/pop-ncflow.

4.2 Partitioned Optimization Problems for TE

When a traffic engineering problem is granular, we can split it into sub-problems, where
each sub-problem has a subset of the commodities from the original problem. Importantly,
all links are preserved in each sub-problem; otherwise, this could potentially create scenar-
ios, where a sub-problem attempts to allocate flow on a path, but the link is missing. We
leverage the large number of commodities to randomly partition them problems; this proce-
dure yields high-quality flow allocations in expectation due to the Law of Large Numbers.
We call this technique Partitioned Optimization Problems (or POP for short). In the rest of

this section, we describe the intuition, procedure, and benefits of POP.

4.2.1 Intuition

Optimization problems for large-scale traffic engineering take a long time to solve in part
because they have many variables. For example, consider a WAN that has N nodes and
M Tlinks. Assuming that every site has traffic to send to every other site (i.e., the traffic
matrix is relatively full), this gives us N2 commodities. If we choose to select flows from &
different paths on each commodity, then we have a matrix of N2k variables. Additionally,
we would have N? + M constraint equations—one for each commodity, and one for each
link. For 10* nodes and 10* links, the problem has on the order of 10® variables and 108
constraints. Contemporary solvers often take hours to solve such problems, although the
exact runtime depends on problem properties such as sparsity [136].

We can achieve much faster allocation computation times by decomposing the prob-
lem; for example, the problem of allocating 10° commodities on 10% links (100x fewer
variables) is much more tractable. This procedure of breaking up the larger problem into

sub-problems reduces the search space explored by the solver, since interactions between

https://github.com/stanford-futuredata/pop-ncflow

CHAPTER 4. POP 52

all combinations of commodities are no longer considered. Instead, only combinations
of subsets of commodities are considered, which reduces runtime but also can reduce the
quality of the allocation. In light of this, the interaction between commodities needs to
be considered carefully to take into account the many global constraints in the original
problem, as well as the objective. Additionally, the link capacities need to be distributed
appropriately, so that a sub-problem has enough capacity to service its assigned commodi-
ties. We find that on large traffic matrices, splitting commodities randomly and dividing
link capacities equally among the sub-problems reduces the search space of feasible so-
lutions that needs to be considered by solvers, while still ensuring that some high-quality
feasible points are in the explored search space. This is the main intuition that allows POP
to be effective, returning flow allocations of similar quality as the original formulation but

faster.

4.2.2 Procedure for POP

The first step of POP is to partition the traffic engineering problem into smaller sub-
problems. The type of partitioning allowed is dependent on the objective and constraints
of the allocation problem, and has implications on the runtime speedups and quality of
the returned allocation. We can then re-use the map-reduce API [48, 145] (or divide-and-
conquer): each of these sub-problems can be solved in parallel (map step) using the same
exact LP as the original problem, and then allocations from the sub-problems can be rec-
onciled into a larger allocation for the entire problem (reduce step) through a simple sum-
mation. We show pseudocode for this in Algorithm 1.

The partitioning step affects the runtime, the reconciliation complexity, and ultimately
the quality of the final allocation. For traffic engineering, we use a straightforward approach
and divide the commodities randomly into the sub-problems. We find that this partitioning
scheme is effective even when the traffic matrix does not exhibit any skew (e.g., the com-
modities’ demands are relatively uniform). With random partitioning, the reduce step is
cheap, which was not the case in NCFlow: there, a more complex reconciliation step was

involved to combine the flow allocations from the various sub-problems.

CHAPTER 4. POP 53

Algorithm 1 POP Procedure.

Input: Commodities D = [x1, 9, ..., Tk], links & = [ey, e, ..., ep], number of sub-
problems [, (optional) ratio of extra virtual commodities allowed .
Return: Allocation for all X commodities, f.

// Optional: make the problem granular if it is not already.
D’ = SPLIT_COMMODITIES(D, t)

// This is the partition step.
D1, D), ..., D), &1, ..., E]] = partition(D', E,1)
// For each edge e € &', the edge’s capacity is now c./.

// This is the map step, can be performed in parallel.
for i in range(l) do
f; = MaxFlow(D;, &)

// This could be a different objective, such as MaxConcurrentFlow.
end for

// This is the reduce step; flow allocations f; are summed up.

f=>,f

4.2.3 Transformations to Granularize TE Problems

In some cases, it might not be possible to either return a flow allocation that is feasible or
high quality by merely assigning each commodity to each sub-problem at random when
using the POP procedure. This is notably the case when we have a skewed traffic matrix:
when a small number of commodities have large demands that dominate the rest [12].
This is common for certain traffic patterns, such as the Poisson traffic model that we
saw in §3.5. If several of these “heavy” commodities were assigned to the same sub-
problem, this would immediately lead to sub-optimal total flow; the link capacities assigned
to that some problem will not be sufficient. To transform these into granular problems, we
propose an algorithm called commodity splitting to split these commodities across several
sub-problems.

For simplicity when defining the algorithm, we also define the concept of a splitting at-
tribute that we will use to determine how to create these virtual commodities and distribute

them across several sub-problems. When splitting, it is important that the commodity’s

CHAPTER 4. POP 54

Commodities Distribute virtual commmodities
ACross sub-problems
SE55 P
OO0
LR -
B commaodity 5o || e |08 || e
<><><><><>

— ’:’ — " Allocation then aggregated
Commodity with across virtual commodities
large demand

Figure 4.2: Commodity splitting, where we granularize a traffic matrix with skewed demands by
splitting the largest commodities until a pre-determined threshold ¢ is met.

other attributes—its source, its target, and its paths—are copied over without change. In
our setting, this splitting attribute is the commodity’s traffic demand. We then construct a
priority queue (heap) of the corresponding attribute values for all clients. Given a threshold
t (1 1s typically a number less than 1) on the maximum number of extra virtual commodities
allowed, we pop and split commodities off the queue, and then push the new commodities
back into the queue. Each split reduces the value of the demand of the popped commodity
by a factor of 2. Importantly, each split maintains the feasibility invariant: the coalesced
allocation across virtual commodities will still be feasible (since the total sum of the split
demands remains the same). By reducing the value of the demand, commodity splitting
breaks down large commodities into a collection of smaller commodities with equivalent
total demand. The runtime of this algorithm is O(K log K'), where K is the number of
commodities, which is cheap compared to the runtime of computing a flow allocation in
each sub-problem. Algorithm 2 shows pseudocode, and the procedure is illustrated in Fig-
ure 4.2. Empirically, we found that most TE problems are granular enough for POP to work
well with O split commodities. Moreover, commodity splitting does not adversely impact
allocation quality, but it can increase runtime. The hardest problems in our experiments
required ¢ = 0.75. The optimal value of ¢ is problem-specific, and it is possible that users

may have to dynamically adapt ¢ to get the best performance from POP. However, in all

CHAPTER 4. POP 55

Algorithm 2 Commodity Splitting Algorithm.

Input: Inputs D = [z, x9, . .., Tx], ratio of extra virtual commodities ¢ allowed.
Return: Mapping from real to virtual clients {z; — [2}]}.

Initialize queue <— MAX_HEAP(), mapping < {}.

// Enqueue every commodity based on its demand

Foralli € {1,2,..., K}, queue.PUSH(z;.demand, z;).

while len(queue) < (1 +¢) - ndo
Tmax = queue.POP()
Split x.x by demand into two copies x
Tmax-demand /2).

1 2 1 2 _
o and 2 (x. . .demand, x . .demand =

UPDATE_MAPPING (Zpmax; [Th 1 T204])

max’ ““max
queue.PUSH(z! .demand, z}), queue.PUSH(z2 .demand, z2)
end while

of the considered production use-cases in our experiments, we found that small values of ¢
that worked well for historical problem instances continue to work well on future problem
instances.

The resulting allocation problem after these transformation steps can be granular; if
so, we can use POP to solve it. After the partition step, we obtain allocations for each
virtual variable in the problem. Allocations assigned to virtual variables corresponding to
a single commodity need to be summed to obtain the final allocation. We show how this

can be incorporated into the full POP procedure in Algorithm 1.

4.2.4 Advantages of POP

Our simple approach provides us with several advantages. To begin with, because POP
reuses the underlying problem formulation, it can be applied to a broad class of TE objectives—

not only maximum total flow, but also maximum concurrent flow, for example:

CHAPTER 4. POP 56

MaxConcurrentFlow(V, £, D, P) £ max o 4.1)
s.t. dya < fi,Vk €D
f € FeasibleFlow(V, &, D, P)

Similarly, we can apply POP to min-max link utilization:

MinMaxLinkUtil(V, £, D, P) = min z 4.2)
s.t. Z i <zVeef&
Vk,pePy,e€p

f € FeasibleFlow(V, &, D, P)

Here, we see that POP’s flexibility is analogous to the linear program itself: the constraints
and the underlying problem definition do not have to change—only the objective function
changes. By contrast, these objectives have traditionally required different approximation
algorithms [53, 80].

Another advantage of POP is its composability: it can be used in an outer loop as a
simplifying step for a downstream heuristic or approximation algorithm. For example, one
might use POP to initially partition the TE problem, and then use Fleischer’s algorithm
to solve the individual sub-problems. POP could also be combined with different path
selection algorithms. Lastly, like NCFlow, POP exposes a tunable knob—the number of
sub-problems [—that lets the user explicitly trade-off between flow allocation quality and

runtime.

4.2.5 When Does POP not Apply to TE?

Note that POP is not applicable for every variant of the TE problem. For example, suppose
our problem included hard constraints like “flows A and B should/should not use the same
link.” This would not align well with randomly partitioning the commodities (e.g., random

partitioning could drop flows A and B into different sub-problems when flows A and B

CHAPTER 4. POP 57

Topology | #Nodes # Edges
Kdl 754 1790
Cogentco 197 486
UsCarrier 158 378
Colt 153 354
GtsCe 149 386
TataNId 145 372
DialtelecomCz 138 302
Deltacom 113 322

Table 4.1: The WAN topologies used to benchmark POP. Like Table 3.3, the networks in blue were
obtained from the Internet Topology Zoo [82] at http://www.topology—zoo.org/.

need to use the same link); smarter partitioning algorithms can mitigate this by considering

affinity between flows, but supporting these is left to future work.

4.3 Evaluation

In this section, we evaluate POP against NCFlow and the state of the art in TE. We aim to

answer the following questions:

1. What is the effect of POP on flow allocation quality and execution time for traffic

engineering? How does it compare to relevant heuristics?
2. Does POP work across a range of objective functions?

3. How effective are POP’s commodity splitting optimization in generating high-quality

flows?

4. How does random partitioning compare to other more sophisticated problem parti-

tioning strategies?

We evaluate POP using the same set of traffic matrices as NCFlow, but on a subset of
the topologies from Table 3.3. (See Table 4.1.) Unlike NCFlow, our results span three
different TE objectives: maximize total flow, maximize concurrent flow, and min-max link

utilization.

http://www.topology-zoo.org/maps/Kdl.jpg
http://www.topology-zoo.org/maps/Cogentco.jpg
http://www.topology-zoo.org/maps/UsCarrier.jpg
http://www.topology-zoo.org/maps/Colt.jpg
http://www.topology-zoo.org/maps/GtsCe.jpg
http://www.topology-zoo.org/maps/TataNld.jpg
http://www.topology-zoo.org/maps/DialtelecomCz.jpg
http://www.topology-zoo.org/maps/Deltacom.jpg
http://www.topology-zoo.org/

CHAPTER 4. POP 58

===+ CSPF — =+ Fleischer-Path, € = 0.5 — NCFlow
== SMORE* ----- Fleischer-Edge, € = 0.5 —— POP,/=16
1.0 I
i
@ 0.751 |
o
S [
c 0.5 |
= Better >
§ 0.25+ |
u lllllllllllllllllllllll
0.0 === i |
0.2 0.4 0.6 1.2
Total Flow, relative to PF,4
(a) CDF of total flow relative to PF4
1.0
0.75+
0.51
0.251
0.0 !

100 10 10" 102 108
Speedup, relative to PF4 (log scale)
(b) CDF of speedup relative to PF,

Figure 4.3: CDFs comparing POP vs NCFlow with state-of-the-art methods. Like NCFlow, POP
offers a substantial runtime speedup, with only a modest decrease in total flow.

We first present end-to-end experiments, then present some micro-benchmarks that ex-

amine the impact of various algorithmic contributions in POP.

4.3.1 Comparing POP to the State of the Art

We first demonstrate POP’s end-to-end effectiveness. In our experiments, the total number
of threads given to solvers for our baselines and POP are the same. If | sub-problems are
solved in parallel when using POP, each sub-problem uses 1/ of the number of threads.

Unless otherwise noted, we benchmark POP with [= 16 sub-problems.

CHAPTER 4. POP 59

We tested POP on the topologies shown in Table 4.1 from the Topology Zoo reposi-
tory [82]. For each topology, we benchmarked POP on the same set of synthetic traffic
matrices previously seen in §3.5. As previously noted, these traffic matrices were gener-
ated using several traffic models: Gravity [18,123], Uniform, Bimodal [18], and Poisson.
Because Poisson represents a skewed workload, where a small percentage of commodities
dominate the network demand. For this workload, we use the commodity splitting algo-
rithm from §4.2.3 to improve flow quality. We do not use commodity splitting for the other

traffic matrices.

Maximum Total Flow. Figures 4.3a and 4.3b show cumulative density functions (CDFs)
of the relative total flow and speedup ratio for POP and NCFlow and several baselines.
These two figures are extensions of Figure 3.10, with the exception benchmark on the 8
topologies in Table 4.1.

We see that POP, the densely dashed orange lines in both figures, almost always allo-
cates at least 90% of PF,’s total flow, while achieving large speedups. In the median case,
POP achieves 99.9% of the flow and is over 18x faster than PF,. By contrast, NCFlow
achieves 99.0% of the flow, with a median speedup of 9.8 x on the same cohort of traffic
matrices. However, NCFlow seems to outperform POP at the tail of the speedup CDF: its
maximum speedup is 1906 x, while POP’s is 98 x.

Figure 4.4 shows the trade-off between runtime and allocated flow on the Kentucky
Data Link network (Kdl in Table 4.1), which has 754 nodes and 1790 edges spanning
the Eastern half of continental USA. We instantiated over 5 x 10° demands, with 4 paths
per commodity in the network. The flow allocated by POP is within 1.5% of optimal
when using 64 sub-problems, yet 100 x faster than the original problem. Again, POP also
compares favorably to CSPF [58] and NCFlow.

Figure 4.5 shows the improvement in allocation quality and runtime compared to the
original LP formulation presented in §6.4 with POP using 16 sub-problems. Each point in
the scatterplot represents a different topology and traffic matrix. We see larger speedups
for the larger Kdl topology. We used commodity splitting with a threshold (¢) of 0.75
for the Poisson traffic matrices (where some commodities have large demands), and no

commodity splitting for the other traffic models, which were granular out of the box.

CHAPTER 4. POP

60

= x10%

S,

D POP-64 POP-16 POP-4 PF,
© 2- ° [® o O [J
S |NCFlow [oX CSPF

T 11 R

E Yo

-'6 0 T T LENNLINL L | T T T T T TTT T T T T T T TT T T
= 109 10’ 102

Runtime (seconds)

Figure 4.4: Results for the Maximum Total Flow problem for traffic engineering for a single topol-
ogy and traffic matrix. The scatterplot shows runtimes and total allocated flow for the formulation
shown in Equation 2.2 (PF,) and its POP variants, as well as CSPF and NCFlow.

1.001
0.751
= 0.501

problem

in

Total flow rel. to
d
o
N
a

ori

0.00

e KDL @ Non-KDL

Woo o

10" 102

Speedup rel. to original problem

Figure 4.5: Results for the Maximum Total Flow problem for traffic engineering for multiple topolo-
gies and traffic matrices. The scatterplot shows runtimes and allocated total flow for POP-16 across
275 experiments, separated by large (Kdl) and small (non-Kdl) topologies.

CHAPTER 4. POP 61

-==- NCFlow - POP,+0x ~ —— POP, +0.25x
1.004 ~— —
_'9: g = “‘,\,' -""ﬂ"' \Wm"q""\‘m’fw ""ﬂ"""”-r"‘“ vorean
<5
o
< a
2T
—c
S o
25

201
25
—
L9 qc.
a 5 15
D E
Lo 10+ ’ ¥ X
) TN it Ot o gl M‘M" v‘\‘\,"""‘f‘""""‘“\'\,“fh"‘“\‘*uis\“w
0 1 2 3 4 5
Time (days)

Figure 4.6: Allocated flow and speedup relative to original problem on a 5-day sequence of real-
world traffic matrices from a private WAN with 100s of nodes and edges. With commodity splitting
(t = 0.25), POP allocates >99% of the total flow with a 12.5x median speedup.

CHAPTER 4. POP 62

1.00
2
64 POP-16 POP-4 PF
gé 0.75 POP-64 O °’
£ 20501
=5 0.25- N
* 0.00 ——r—————————e———
10" 102 10° 10

Runtime (seconds)

Figure 4.7: Results for the Maximum Concurrent Flow problem for traffic engineering for a single
topology and traffic matrix. The scatterplot shows runtimes and minimum fractional flow for the
formulation shown in Equation 4.1 (PF,) and its POP variants.

We also ran experiments on the same set of real-world traffic matrices we saw in Fig-
ure 3.13. Figure 4.6 plots the moving average (over 5 windows) of the total flow and
speedup relative to the original problem for NCFlow, POP with no commodity splitting,
and POP with ¢ = 0.25 commodity splitting. Without commodity splitting, POP achieves
significant speedups (15 x in the median case) compared to the original problem, but allo-
cates 89.1% of the total flow in the median case. However, POP with commodity splitting
nearly matches the total flow allocated in the original problem (99.9% in the median case),

while still achieving a median 12.5x speedup.

Maximum Concurrent Flow. Similarly, we benchmarked POP on the Maximum Con-
current Flow objective using the same set of topologies and traffic matrices. Figure 4.7
shows the trade-off between runtime and minimum fractional flow on the Kdl topology,
using the same traffic matrix in Figure 4.4. The objective value realized by POP is again
within 1.5% of optimal when using 64 sub-problems, yet 1000x faster than the original
problem. As before, we use commodity splitting with a threshold of 75% for the Poisson

traffic matrices, and no commodity splitting for the other traffic matrices.

Min-Max Link Utilization. Lastly, we benchmarked POP on the Min-Max Link Utiliza-

tion objective using the same set of topologies and traffic matrices. Figure 4.8 shows the

CHAPTER 4. POP 63

1.00
{POP-64 POP-16 POP-4 Exact sol.

x §075{g o .
=% 1500694 0.688 0.684 0.683
A &
=5 025{ %8,

0.00 +——— ——————

100 10'

Runtime (seconds)

Figure 4.8: Results for the Min-Max Link Utilization problem for a single topology and traffic
matrix. The scatterplot shows runtimes and maximum link utilization for the formulation shown
in Equation 4.2 (PF,) and its POP variants.

trade-off between runtime and maximum link utilization again on the Kdl topology, using
the same traffic matrix in Figure 4.4. The objective value realized by POP is again within
1.5% of optimal when using 64 sub-problems, yet 56x faster than the original problem.
As before, we use commodity splitting with a threshold of 75% for the Poisson traffic

matrices, and no commodity splitting for the other traffic matrices.

4.3.2 Effectiveness of Commodity Splitting

Figure 4.9 shows the effect of commodity splitting on total flow and runtime when using
POP with 16 sub-problems, on a traffic engineering problem with “large” commodities
(Poisson traffic model) as well as a more typical set of commodities (Gravity traffic model)
and a Maximum Total Flow objective. The figure shows separate cumulative distributions
of approximately 100 different experiments for each traffic model and commodity splitting
threshold (¢ in Algorithm 3).

We see that with skewed traffic (Poisson traffic model) and no commodity splitting,
the total flow is typically far from optimal. Commodity splitting drastically increases the
median relative total flow from 0.2 to near 1.0 for these problems, at the cost of some
runtime overhead (due to an increase in the number of variables). In contrast, the problems

with Gravity traffic get near-optimal allocated flow without commodity splitting.

CHAPTER 4. POP 64

+0x clients ---=- +0.5x clients —-— +1x clients
8 1.01 S 1.01
(/)] wn
3 0.751 3 0.751
(@)
2 0.5 2 0.5/
k<) kel
© 0.251 J © 0.251
© Jj ©
O'%.O 0.5 1.0 O'%.O 0.5 1.0
Total flow ratio Total flow ratio
(a) Gravity (total flow ratio). (b) Poisson (total flow ratio).
S 1.0 S 1.0
w wn
3 0.751 3 0.75-
(@]
2 05 ° 05
S S
© 0.251 5 0.251
© ©
0.0 10’ 102 0.0 10’ 102
Speedup ratio Speedup ratio
(c) Gravity (speedup ratio). (d) Poisson (speedup ratio).

Figure 4.9: Comparison of POP-16 relative to original problem for the Maximum Total Flow ob-
jective, across different levels of additional split commodities (0x to 1x) and traffic matrices from
two traffic models: Gravity and Poisson (which is skewed).

CHAPTER 4. POP 65

= x104

_04

5 3 Tt g,

o

O 24 ..,

T --M-- Skewed —A-- Random rom
E Power-of-2

OO T T T T
= 4 8 16

Number of sub-problems

Figure 4.10: Performance comparison of various partitioning algorithms for the Maximum Total
Flow objective in traffic engineering. Power-of-2 partitioning is nearly identical to random parti-
tioning.

4.3.3 Alternatives to Random Partitioning

We implemented several algorithms to partition commodities into sub-problems, and com-
pared them to random partitioning. Among these is a power-of-2 partitioning algorithm that
tries to assign each commodity sequentially to one of two randomly chosen sub-problems
using “distributional similarity” to the original problem as the metric. We also implement a
skewed partitioning algorithm that deliberately creates skew among sub-problems to show
the impact of bad partitions. Figure 4.10 shows the impact of these partitioning algorithms
on the quality of allocation returned by POP on a traffic engineering problem. We see that
random partitioning performs about as well as the more sophisticated power-of-2 partition-
ing, while skewed partitions have poor performance (skewed causes link congestion around
certain nodes in the WAN).

4.4 Related Work and Discussion

In this section, we discuss other techniques for traffic engineering that share lineage with
POP.

CHAPTER 4. POP 66

Randomized Algorithms in Networking. Randomized approaches have seen success in
other important networking tasks as well. For example, in data center networking [129],
random graph topologies work surprisingly well compared to commonly-used structured
topologies such as FAT-trees. In load-balancing algorithms [99], assigning jobs to the
least-loaded of just two randomly selected servers in a cluster can drastically reduce the
probability of overloading a server.

Additionally, Valiant Load-Balancing (VLB) [146] uses a simple randomized approach
for routing traffic: the source node samples an intermediate node to forward traffic to (e.g.,
using CSPF or EC